

Doku

Hexamurai
from Elektor
July 2011

David Grayson
Las Vegas

Ruby Meetup
2012-4-18

Doku is a Ruby gem for
solving Sudoku-like puzzles

Sudoku

Hexadoku

Hexamurai
from Elektor
Oct 2011

Hexamurai

Hexamurai
from Elektor
July 2011

Demo

About Doku

 Written purely in Ruby
 Short methods
 Well-defined objects and classes
 Complete documentation
 Fully functional classes
 Test-driven development
 Lots of time refactoring
 Plus, it can generate SVGs!

Simplified Class Structure

Sudoku Hexadoku Hexamurai

Puzzle

Puzzle class is general

 Every subclass has these attributes:
 glyphs (e.g. 1,2,3,4,5,6,7,8,9)
 squares (every spot on the puzzle)
 groups (sets of squares)

 Every instance has:
 glyph_state: Hash associating squares to

glyphs.

 Squares and glyphs can be any ruby object.

Solving a Puzzle

 Solution is a set of glyph assignments
 e.g. write 6 in the square at (3,4)

 Solution achieves certain goals exactly once:

I. For each square, assign ONE glyph to it.

II.Assign every glyph to every group ONCE.

 Each glyph assignment achieve a subset of
these goals.

Sudoku-like puzzles can be
reduced to exact cover

problems!

Exact cover problem

 Given: universe set
 Given: several of subsets of the universe
 Problem: Choose some of those subsets so

that every element in the universe set
appears exactly once.

Exact cover example

Universe: [A,B,C,D,E,F,G]

Subsets: [C,E,F]
 [A,D,G]
 [B,C,F]
 [A,D]
 [B,G]
 [D,E,G]

Exact cover example

Universe: [A,B,C,D,E,F,G]

Subsets: [C, E,F]
 [A, D, G]
 [B,C, F]
 [A, D]
 [B, G]
 [D,E, G]

Solution: [B, G]
 [A, D]
 [C, E,F]

Algorithm X

[C, E,F]
[A, D, G]
[B,C, F]
[A, D]
[B, G]
[D,E, G]

0 0 1 0 1 1 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 0 0
0 1 0 0 0 0 1
0 0 0 1 1 0 1

Subsets Matrix

Algorithm X Demo
 A B C D E F G
p 0 0 1 0 1 1 0
q 1 0 0 1 0 0 1
r 0 1 1 0 0 1 0
s 1 0 0 1 0 0 0
t 0 1 0 0 0 0 1
u 0 0 0 1 1 0 1

 B C E F
p 0 1 1 1
r 1 1 0 1

E

Algorithm X Demo
 A B C D E F G
p 0 0 1 0 1 1 0
q 1 0 0 1 0 0 1
r 0 1 1 0 0 1 0
s 1 0 0 1 0 0 0
t 0 1 0 0 0 0 1
u 0 0 0 1 1 0 1

 B C E F
p 0 1 1 1
r 1 1 0 1

Algorithm X Demo

 B C E F G
p 0 1 1 1 0
r 1 1 0 1 0
t 1 0 0 0 1

Empty matrix = success!

 A B C D E F G
p 0 0 1 0 1 1 0
q 1 0 0 1 0 0 1
r 0 1 1 0 0 1 0
s 1 0 0 1 0 0 0
t 0 1 0 0 0 0 1
u 0 0 0 1 1 0 1

 C E F
p 1 1 1

Efficient Algorithm X

 Data type for a large matrix
 Finding 1s in a given column or row quickly
 Removing columns and rows quickly
 Quick reinserting

Dancing Links Intro

class Node
 attr_accessor :left, :right
end

Easy removal

class Node
 attr_accessor :left, :right

 def remove
 left.right = right
 right.left = left
 end
end

Also easy reinsertion!

class Node
 attr_accessor :left, :right

 def remove
 left.right = right
 right.left = left
 end

 def reinsert
 left.right = right.left = self
 end
end

No arguments
For reinsert!

2D doubly-linked list

A B C D E F G

2D doubly-linked list
Column
headers

Root
node

Ruby's default
#inspect can
NOT handle
this!

HorizontalLinks module

LinkEnumerator class

Hexamurai

768 squares

2872 goals

3433 subsets

13 minutes
to find ALL
solutions!

Architecture
Sudoku Hexadoku Hexamurai

Puzzle PuzzleOnGrid

SolvableWithDancingLinks

DancingLinks

HorizontalLinks

VerticalLinks

LinkMatrix

Column

Node

LinkEnumerator

The end

Hidden slide

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

