

ECDSA gem

David Grayson
Las Vegas Ruby Meetup

2014-04-09

https://github.com/DavidEGrayson/ruby_ecdsa

ECDSA

● Elliptic Curve Digital Signature Algorithm

Elliptic Curve Space

● 2-dimensional
● A point has two coordinates, x and y
● x and y are integers between 0 and p-1,

where p is a pre-defined large prime

Elliptic Curve

● Curve equation, modulo prime p:

y2=x3+ax+b

Elliptic Curve Group

● Need to define addition of points
● Need to pick a generator point G
● The curve group is made up of these points:

∞ ,G ,G+G,G+G+G, ...

● The words “group” and “curve” are often used
interchangeably in ECDSA.

These parameters define
an Elliptic curve:

● p: prime that defines the range of the coords
● a: coefficient in the curve equation
● b: coefficient in the curve equation
● G: the generator point

Example curve parameters

module ECDSA
 class Group
 Secp112r1 = new(
 name: 'secp112r1',
 p: 0xDB7C_2ABF62E3_5E668076_BEAD208B,
 a: 0xDB7C_2ABF62E3_5E668076_BEAD2088,
 b: 0x659E_F8BA0439_16EEDE89_11702B22,
 g: [0x0948_7239995A_5EE76B55_F9C2F098,
 0xA89C_E5AF8724_C0A23E0E_0FF77500],
 n: 0xDB7C_2ABF62E3_5E7628DF_AC6561C5,
 h: 1,
)
 end
end

secp112r1 curve visualization

x

y

Private key

● A private key is just an integer d

● The public key is G added to itself d times.

require 'ecdsa'
require 'securerandom'
group = ECDSA::Group::Secp256k1
private_key = 1 + SecureRandom.random_number(group.order - 1)
puts 'private key: %#x' % private_key

public_key = group.generator.multiply_by_scalar(private_key)
puts 'public key: '
puts ' x: %#x' % public_key.x
puts ' y: %#x' % public_key.y

Signing and verifying

require 'digest/sha2'
message = 'ECDSA is cool.'
digest = Digest::SHA2.digest(message)
signature = nil
while signature.nil?
 temp_key = 1 + SecureRandom.random_number(group.order - 1)
 signature = ECDSA.sign(group, private_key, digest, temp_key)
end
puts 'signature: '
puts ' r: %#x' % signature.r
puts ' s: %#x' % signature.s

ECDSA.valid_signature?(public_key, digest, signature)

ECDSA gem design decisions

● Value education/experimentation over efficiency
– Cryptographic code, not cryptic

– Avoid OpenSSL as much as possible

● No randomness
– Let the user choose a random number generator

● Separation of concerns between cryptography
and binary data formatting
– Cryptographic classes work with Ruby integers

https://github.com/DavidEGrayson/ruby_ecdsa

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

