

SWIG and Ruby

David Grayson
Las Vegas Ruby Meetup

2014-09-10

SWIG

● SWIG stands for:
Simplified Wrapper and Interface Generator

● SWIG helps you access C or C++ code from 22
different languages, including Ruby

SWIG inputs and outputs

SWIG interface file (.i)
Ruby C extension
source (.c or .cxx)

Simple C++ example

#include <stdio.h>

class David
{
public:
 David(int x)
 {
 this->x = x;
 }

 void announce()
 {
 printf("David %d\n", x);
 }

 int x;
};

%module "david"
%{
#include <libdavid.h>
%}

class David
{
public:
 David(int x);
 void announce();
 int x;
};

libdavid.h: libdavid.i

Compiling Simple C++ example

require 'mkmf'
system('swig -c++ -ruby libdavid.i') or abort
create_makefile('david')

extconf.rb

$ ruby extconf.rb # create libdavid_wrap.cxx and Makefile
$ make # compile david.so
$ irb -r./david # try it out

irb(main):001:0> d = David::David.new(4)
=> #<David::David:0x007f40090a5280 @__swigtype__="_p_David">
irb(main):002:0> d.announce
David 4
=> nil

Commands to run:

(This example worked for me with SWIG 3.0.2 and Ruby 2.1.2.)

That example was pretty simple

● All code was in a .h file
● No external libraries
● Simple data types
● No consideration of deployment

...but SWIG has tons of features
C:

● All ISO C datatypes
● Global functions
● Global variables, constants
● Structures and unions
● Pointers
● (Multidimensional) arrays
● Pointers to functions
● Variable length arguments
● Typedefs
● Enums

C++:
● All C++ datatypes
● References
● Pointers to members
● Classes
● (Multiple) inheritance
● Overloaded functions
● Overloaded methods
● Overloaded operators
● Static members
● Namespaces
● Templates
● Nested classes

...

SWIG Typemaps

● Define custom ways to map between scripting-
language types and C++ types.

● Can be used to add and remove parameters
from of exposed functions.
– http://stackoverflow.com/a/14427814/28128

SWIG supports 22 languages:

● Allegro CL
● C#
● CFFI
● CLISP
● Chicken
● D
● Go
● Guile
● Java
● Javascript
● Lua

● Modula-3
● Mzscheme
● OCAML
● Octave
● Perl
● PHP
● Python
● R
● Ruby
● Tcl
● UFFI

SWIG History

● Originally developed in 1995 by scientists in the
Theoretical Physics Division at Los Alamos

● Actively developed today
– https://github.com/swig/swig

– 5 releases in the last 12 months, including 3.0.0

https://github.com/swig/swig

SWIG and freedom

● SWIG philosophy: programmers are smart and
that tools should just stay out of their way.

● My question: which programmers?

C/C++ memory issues

● Segmentation faults
● Memory leaks
● Freeing objects that might still be used
● Improper sharing of memory

Proxy Classes

● SWIG generates one proxy Ruby class for each
wrapped C++ class

● Proxy instances know whether they own the
underlying class.

● Ownership can change, sometimes
automatically

● Not perfect

Proxy Classes (cont.)

f = Foo.new # Creates a new Foo
s = Spam.new # Creates a new Spam
s.foo = f # Stores a pointer to f inside s
g = s.foo # Returns stored reference

http://www.swig.org/Doc3.0/SWIGPlus.html#SWIGPlus_nn40

Foo Proxy (f)

Foo

Spam proxy (s)

Spam

Foo Proxy (g)

Smart Pointers
● Uses reference counting
● C++11 standard: std::shared_ptr class

Foo Proxy (f)

shared_ptr
<Foo>

Spam proxy (s)

shared_ptr
<Spam>

Foo Proxy (g)

Foo Spam

* Should actually be drawn as a cluster of 3 shared_ptr objects

shared_ptr
<Foo>

shared_ptr
<Foo>

Smart Pointers in SWIG

● Smart pointers available for some languages

$ find /usr/share/swig -name boost_shared_ptr.i
/usr/share/swig/3.0.2/csharp/boost_shared_ptr.i
/usr/share/swig/3.0.2/octave/boost_shared_ptr.i
/usr/share/swig/3.0.2/r/boost_shared_ptr.i
/usr/share/swig/3.0.2/java/boost_shared_ptr.i
/usr/share/swig/3.0.2/d/boost_shared_ptr.i
/usr/share/swig/3.0.2/python/boost_shared_ptr.i

● Alternative is the “ref” and “unref” features
– I could not get it to work

http://www.swig.org/Doc3.0/SWIGPlus.html#SWIGPlus_ref_unref

Conclusion

● SWIG is really powerful, but it is too easy to
create code with memory issues.

● I would like a recipe of simple rules to follow to
avoid all memory issues.

Resources

● http://swig.org/

● http://www.davidegrayson.com/presentations/20131023-ruby-c/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

