
Programming Languages — Ruby

IPA Ruby Standardization WG Draft

August 25, 2010

©Information-technology Promotion Agency, Japan 2010

ii

Contents Page

1 Scope . 1

2 Normative references . 1

3 Conformance . 1

4 Terms and definitions . 2

5 Notational conventions . 4
5.1 General description . 4
5.2 Syntax . 4

5.2.1 General description . 4
5.2.2 Productions . 4
5.2.3 Syntactic term sequences . 6
5.2.4 Syntactic terms . 7
5.2.5 Conceptual names . 9

5.3 Semantics . 10
5.4 Attributes of execution contexts . 11

6 Fundamental concepts . 11
6.1 Objects . 11
6.2 Variables . 12

6.2.1 General description . 12
6.2.2 Instance variables . 12

6.3 Methods . 13
6.4 Blocks . 13
6.5 Classes, singleton classes, and modules . 13

6.5.1 General description . 13
6.5.2 Classes . 14
6.5.3 Singleton classes . 14
6.5.4 Inheritance . 15
6.5.5 Modules . 16

6.6 Boolean values . 17

7 Execution contexts . 17
7.1 General description . 17
7.2 The initial state . 18

8 Lexical structure . 19
8.1 General description . 19
8.2 Program text . 19
8.3 Line terminators . 19
8.4 Whitespace . 20
8.5 Comments . 21
8.6 End-of-program markers . 22
8.7 Tokens . 22

8.7.1 General description . 22
8.7.2 Keywords . 23
8.7.3 Identifiers . 23
8.7.4 Punctuators . 24
8.7.5 Operators . 24
8.7.6 Literals . 25

iii

8.7.6.1 General description . 25
8.7.6.2 Numeric literals . 25
8.7.6.3 String literals . 28

8.7.6.3.1 General description . 28
8.7.6.3.2 Single quoted strings . 28
8.7.6.3.3 Double quoted strings . 29
8.7.6.3.4 Quoted non-expanded literal strings 32
8.7.6.3.5 Quoted expanded literal strings 34
8.7.6.3.6 Here documents . 35
8.7.6.3.7 External command execution 37

8.7.6.4 Array literals . 38
8.7.6.5 Regular expression literals . 41
8.7.6.6 Symbol literals . 42

9 Scope of variables . 43
9.1 General description . 43
9.2 Scope of local variables . 44
9.3 Scope of global variables . 44

10 Program structure . 45
10.1 Program . 45
10.2 Compound statement . 45

11 Expressions . 46
11.1 General description . 46
11.2 Logical expressions . 46

11.2.1 General description . 46
11.2.2 Keyword logical expressions . 47
11.2.3 Logical NOT expressions . 47
11.2.4 Logical AND expressions . 48
11.2.5 Logical OR expressions . 49

11.3 Method invocation expressions . 49
11.3.1 General description . 49
11.3.2 Method arguments . 55
11.3.3 Blocks . 58
11.3.4 The super expression . 61
11.3.5 The yield expression . 64

11.4 Operator expressions . 65
11.4.1 General description . 65
11.4.2 Assignments . 65

11.4.2.1 General description . 65
11.4.2.2 Single assignments . 66

11.4.2.2.1 General description . 66
11.4.2.2.2 Single variable assignments . 66
11.4.2.2.3 Scoped constant assignments 68
11.4.2.2.4 Single indexing assignments . 69
11.4.2.2.5 Single method assignments . 70

11.4.2.3 Abbreviated assignments . 71
11.4.2.3.1 General description . 71
11.4.2.3.2 Abbreviated variable assignments 71
11.4.2.3.3 Abbreviated indexing assignments 72
11.4.2.3.4 Abbreviated method assignments 73

11.4.2.4 Multiple assignments . 73

iv

11.4.2.5 Assignments with rescue modifiers 77
11.4.3 Unary operator expressions . 77

11.4.3.1 General description . 77
11.4.3.2 The defined? expression . 78

11.4.4 Binary operator expressions . 80
11.5 Primary expressions . 83

11.5.1 General description . 83
11.5.2 Control structures . 84

11.5.2.1 General description . 84
11.5.2.2 Conditional expressions . 84

11.5.2.2.1 General description . 84
11.5.2.2.2 The if expression . 85
11.5.2.2.3 The unless expression . 86
11.5.2.2.4 The case expression . 86
11.5.2.2.5 Conditional operator expression 88

11.5.2.3 Iteration expressions . 88
11.5.2.3.1 General description . 88
11.5.2.3.2 The while expression . 89
11.5.2.3.3 The until expression . 90
11.5.2.3.4 The for expression . 91

11.5.2.4 Jump expressions . 91
11.5.2.4.1 General description . 91
11.5.2.4.2 The return expression . 92
11.5.2.4.3 The break expression . 93
11.5.2.4.4 The next expression . 94
11.5.2.4.5 The redo expression . 95
11.5.2.4.6 The retry expression . 95

11.5.2.5 The begin expression . 96
11.5.3 Grouping expression . 98
11.5.4 Variable references . 98

11.5.4.1 General description . 98
11.5.4.2 Constants . 99
11.5.4.3 Scoped constants . 100
11.5.4.4 Global variables . 100
11.5.4.5 Class variables . 100
11.5.4.6 Instance variables . 101
11.5.4.7 Local variables or method invocations 101

11.5.4.7.1 General description . 101
11.5.4.7.2 Determination of the type of local variable identifiers 101
11.5.4.7.3 Local variables . 102
11.5.4.7.4 Method invocations . 102

11.5.4.8 Pseudo variables . 102
11.5.4.8.1 General description . 102
11.5.4.8.2 The nil expression . 103
11.5.4.8.3 The true expression and the false expression 103
11.5.4.8.4 The self expression . 103

11.5.5 Object constructors . 104
11.5.5.1 Array constructor . 104
11.5.5.2 Hash constructor . 104
11.5.5.3 Range constructor . 105

12 Statements . 106
12.1 General description . 106

v

12.2 The expression statement . 106
12.3 The if modifier statement . 107
12.4 The unless modifier statement . 107
12.5 The while modifier statement . 107
12.6 The until modifier statement . 108
12.7 The rescue modifier statement . 108

13 Classes and modules . 109
13.1 Modules . 109

13.1.1 General description . 109
13.1.2 Module definition . 109
13.1.3 Module inclusion . 111

13.2 Classes . 111
13.2.1 General description . 111
13.2.2 Class definition . 111
13.2.3 Inheritance . 113
13.2.4 Instance creation . 113

13.3 Methods . 113
13.3.1 Method definition . 113
13.3.2 Method parameters . 115
13.3.3 Method invocation . 117
13.3.4 Method lookup . 119
13.3.5 Method visibility . 120

13.3.5.1 General description . 120
13.3.5.2 Public methods . 120
13.3.5.3 Private methods . 120
13.3.5.4 Protected methods . 120
13.3.5.5 Visibility change . 121

13.3.6 The alias statement . 121
13.3.7 The undef statement . 122

13.4 Singleton classes . 123
13.4.1 General description . 123
13.4.2 Singleton class definition . 124
13.4.3 Singleton method definition . 124

14 Exceptions . 126
14.1 General description . 126
14.2 Cause of exceptions . 126
14.3 Exception handling . 126

15 Built-in classes and modules . 127
15.1 General description . 127
15.2 Built-in classes . 129

15.2.1 Object . 129
15.2.1.1 General description . 129
15.2.1.2 Direct superclass . 129
15.2.1.3 Included modules . 129
15.2.1.4 Constants . 129
15.2.1.5 Instance methods . 130

15.2.1.5.1 Object#initialize . 130
15.2.2 Module . 130

15.2.2.1 General description . 130
15.2.2.2 Direct superclass . 130

vi

15.2.2.3 Singleton methods . 130
15.2.2.3.1 Module.constants . 130
15.2.2.3.2 Module.nesting . 131

15.2.2.4 Instance methods . 131
15.2.2.4.1 Module#< . 131
15.2.2.4.2 Module#<= . 132
15.2.2.4.3 Module#<=> . 132
15.2.2.4.4 Module#== . 132
15.2.2.4.5 Module#=== . 132
15.2.2.4.6 Module#> . 133
15.2.2.4.7 Module#>= . 133
15.2.2.4.8 Module#alias method . 133
15.2.2.4.9 Module#ancestors . 134
15.2.2.4.10 Module#append features . 134
15.2.2.4.11 Module#attr . 135
15.2.2.4.12 Module#attr accessor . 135
15.2.2.4.13 Module#attr reader . 136
15.2.2.4.14 Module#attr writer . 136
15.2.2.4.15 Module#class eval . 136
15.2.2.4.16 Module#class variable defined? 137
15.2.2.4.17 Module#class variable get . 138
15.2.2.4.18 Module#class variable set . 138
15.2.2.4.19 Module#class variables . 138
15.2.2.4.20 Module#const defined? . 139
15.2.2.4.21 Module#const get . 139
15.2.2.4.22 Module#const missing . 140
15.2.2.4.23 Module#const set . 140
15.2.2.4.24 Module#constants . 140
15.2.2.4.25 Module#extend object . 141
15.2.2.4.26 Module#extended . 141
15.2.2.4.27 Module#include . 141
15.2.2.4.28 Module#include? . 141
15.2.2.4.29 Module#included . 142
15.2.2.4.30 Module#included modules . 142
15.2.2.4.31 Module#initialize . 142
15.2.2.4.32 Module#initialize copy . 143
15.2.2.4.33 Module#instance methods . 144
15.2.2.4.34 Module#method defined? . 144
15.2.2.4.35 Module#module eval . 145
15.2.2.4.36 Module#private . 145
15.2.2.4.37 Module#protected . 145
15.2.2.4.38 Module#public . 145
15.2.2.4.39 Module#remove class variable 146
15.2.2.4.40 Module#remove const . 147
15.2.2.4.41 Module#remove method . 147
15.2.2.4.42 Module#undef method . 148

15.2.3 Class . 148
15.2.3.1 General description . 148
15.2.3.2 Direct superclass . 148
15.2.3.3 Instance methods . 148

15.2.3.3.1 Class#initialize . 148
15.2.3.3.2 Class#initialize copy . 149

vii

15.2.3.3.3 Class#new . 149
15.2.3.3.4 Class#superclass . 150

15.2.4 NilClass . 150
15.2.4.1 General description . 150
15.2.4.2 Direct superclass . 150
15.2.4.3 Instance methods . 150

15.2.4.3.1 NilClass#& . 150
15.2.4.3.2 NilClass#ˆ . 151
15.2.4.3.3 NilClass#| . 151
15.2.4.3.4 NilClass#nil? . 151
15.2.4.3.5 NilClass#to s . 151

15.2.5 TrueClass . 151
15.2.5.1 General description . 151
15.2.5.2 Direct superclass . 152
15.2.5.3 Instance methods . 152

15.2.5.3.1 TrueClass#& . 152
15.2.5.3.2 TrueClass#ˆ . 152
15.2.5.3.3 TrueClass#to s . 152
15.2.5.3.4 TrueClass#| . 152

15.2.6 FalseClass . 153
15.2.6.1 General description . 153
15.2.6.2 Direct superclass . 153
15.2.6.3 Instance methods . 153

15.2.6.3.1 FalseClass#& . 153
15.2.6.3.2 FalseClass#ˆ . 153
15.2.6.3.3 FalseClass#to s . 153
15.2.6.3.4 FalseClass#| . 154

15.2.7 Numeric . 154
15.2.7.1 General description . 154
15.2.7.2 Direct superclass . 154
15.2.7.3 Included modules . 154
15.2.7.4 Instance methods . 154

15.2.7.4.1 Numeric#+@ . 154
15.2.7.4.2 Numeric#−@ . 155
15.2.7.4.3 Numeric#abs . 155
15.2.7.4.4 Numeric#coerce . 155

15.2.8 Integer . 156
15.2.8.1 General description . 156
15.2.8.2 Direct superclass . 157
15.2.8.3 Instance methods . 157

15.2.8.3.1 Integer#+ . 157
15.2.8.3.2 Integer#− . 157
15.2.8.3.3 Integer#* . 158
15.2.8.3.4 Integer#/ . 158
15.2.8.3.5 Integer#% . 159
15.2.8.3.6 Integer#<=> . 160
15.2.8.3.7 Integer#== . 160
15.2.8.3.8 Integer#˜ . 161
15.2.8.3.9 Integer#& . 161
15.2.8.3.10 Integer#| . 161
15.2.8.3.11 Integer#ˆ . 162
15.2.8.3.12 Integer#<< . 162

viii

15.2.8.3.13 Integer#>> . 162
15.2.8.3.14 Integer#ceil . 162
15.2.8.3.15 Integer#downto . 163
15.2.8.3.16 Integer#eql? . 163
15.2.8.3.17 Integer#floor . 163
15.2.8.3.18 Integer#hash . 164
15.2.8.3.19 Integer#next . 164
15.2.8.3.20 Integer#round . 164
15.2.8.3.21 Integer#succ . 164
15.2.8.3.22 Integer#times . 164
15.2.8.3.23 Integer#to f . 165
15.2.8.3.24 Integer#to i . 165
15.2.8.3.25 Integer#to s . 165
15.2.8.3.26 Integer#truncate . 166
15.2.8.3.27 Integer#upto . 166

15.2.9 Float . 166
15.2.9.1 General description . 166
15.2.9.2 Direct superclass . 167
15.2.9.3 Instance methods . 167

15.2.9.3.1 Float#+ . 167
15.2.9.3.2 Float#− . 167
15.2.9.3.3 Float#* . 168
15.2.9.3.4 Float#/ . 168
15.2.9.3.5 Float#% . 169
15.2.9.3.6 Float#<=> . 170
15.2.9.3.7 Float#== . 171
15.2.9.3.8 Float#ceil . 171
15.2.9.3.9 Float#finite? . 171
15.2.9.3.10 Float#floor . 172
15.2.9.3.11 Float#infinite? . 172
15.2.9.3.12 Float#round . 172
15.2.9.3.13 Float#to f . 172
15.2.9.3.14 Float#to i . 173
15.2.9.3.15 Float#truncate . 173

15.2.10 String . 173
15.2.10.1 General description . 173
15.2.10.2 Direct superclass . 173
15.2.10.3 Included modules . 173
15.2.10.4 Upper-case and lower-case characters 174
15.2.10.5 Instance methods . 174

15.2.10.5.1 String#* . 174
15.2.10.5.2 String#+ . 175
15.2.10.5.3 String#<=> . 175
15.2.10.5.4 String#== . 176
15.2.10.5.5 String#=˜ . 176
15.2.10.5.6 String#[] . 176
15.2.10.5.7 String#capitalize . 178
15.2.10.5.8 String#capitalize! . 178
15.2.10.5.9 String#chomp . 178
15.2.10.5.10 String#chomp! . 179
15.2.10.5.11 String#chop . 179
15.2.10.5.12 String#chop! . 179

ix

15.2.10.5.13 String#downcase . 180
15.2.10.5.14 String#downcase! . 180
15.2.10.5.15 String#each line . 180
15.2.10.5.16 String#empty? . 181
15.2.10.5.17 String#eql? . 181
15.2.10.5.18 String#gsub . 181
15.2.10.5.19 String#gsub! . 183
15.2.10.5.20 String#hash . 183
15.2.10.5.21 String#include? . 183
15.2.10.5.22 String#index . 184
15.2.10.5.23 String#initialize . 184
15.2.10.5.24 String#initialize copy . 185
15.2.10.5.25 String#intern . 185
15.2.10.5.26 String#length . 185
15.2.10.5.27 String#match . 185
15.2.10.5.28 String#replace . 186
15.2.10.5.29 String#reverse . 186
15.2.10.5.30 String#reverse! . 186
15.2.10.5.31 String#rindex . 186
15.2.10.5.32 String#scan . 187
15.2.10.5.33 String#size . 188
15.2.10.5.34 String#slice . 188
15.2.10.5.35 String#split . 188
15.2.10.5.36 String#sub . 190
15.2.10.5.37 String#sub! . 190
15.2.10.5.38 String#to i . 191
15.2.10.5.39 String#to f . 192
15.2.10.5.40 String#to s . 192
15.2.10.5.41 String#to sym . 192
15.2.10.5.42 String#upcase . 192
15.2.10.5.43 String#upcase! . 193

15.2.11 Symbol . 193
15.2.11.1 General description . 193
15.2.11.2 Direct superclass . 193
15.2.11.3 Instance methods . 193

15.2.11.3.1 Symbol#=== . 193
15.2.11.3.2 Symbol#id2name . 194
15.2.11.3.3 Symbol#to s . 194
15.2.11.3.4 Symbol#to sym . 194

15.2.12 Array . 194
15.2.12.1 General description . 194
15.2.12.2 Direct superclass . 195
15.2.12.3 Included modules . 195
15.2.12.4 Singleton methods . 195

15.2.12.4.1 Array.[] . 195
15.2.12.5 Instance methods . 195

15.2.12.5.1 Array#* . 195
15.2.12.5.2 Array#+ . 196
15.2.12.5.3 Array#<< . 196
15.2.12.5.4 Array#[] . 196
15.2.12.5.5 Array#[]= . 197
15.2.12.5.6 Array#clear . 198

x

15.2.12.5.7 Array#collect! . 198
15.2.12.5.8 Array#concat . 198
15.2.12.5.9 Array#delete at . 199
15.2.12.5.10 Array#each . 199
15.2.12.5.11 Array#each index . 199
15.2.12.5.12 Array#empty? . 200
15.2.12.5.13 Array#first . 200
15.2.12.5.14 Array#index . 201
15.2.12.5.15 Array#initialize . 201
15.2.12.5.16 Array#initialize copy . 202
15.2.12.5.17 Array#join . 202
15.2.12.5.18 Array#last . 203
15.2.12.5.19 Array#length . 203
15.2.12.5.20 Array#map! . 204
15.2.12.5.21 Array#pop . 204
15.2.12.5.22 Array#push . 204
15.2.12.5.23 Array#replace . 204
15.2.12.5.24 Array#reverse . 204
15.2.12.5.25 Array#reverse! . 205
15.2.12.5.26 Array#rindex . 205
15.2.12.5.27 Array#shift . 205
15.2.12.5.28 Array#size . 206
15.2.12.5.29 Array#slice . 206
15.2.12.5.30 Array#unshift . 206

15.2.13 Hash . 206
15.2.13.1 General description . 206
15.2.13.2 Direct superclass . 207
15.2.13.3 Included modules . 207
15.2.13.4 Instance methods . 207

15.2.13.4.1 Hash#== . 207
15.2.13.4.2 Hash#[] . 208
15.2.13.4.3 Hash#[]= . 208
15.2.13.4.4 Hash#clear . 209
15.2.13.4.5 Hash#default . 209
15.2.13.4.6 Hash#default= . 209
15.2.13.4.7 Hash#default proc . 210
15.2.13.4.8 Hash#delete . 210
15.2.13.4.9 Hash#each . 210
15.2.13.4.10 Hash#each key . 211
15.2.13.4.11 Hash#each value . 211
15.2.13.4.12 Hash#empty? . 211
15.2.13.4.13 Hash#has key? . 211
15.2.13.4.14 Hash#has value? . 212
15.2.13.4.15 Hash#include? . 212
15.2.13.4.16 Hash#initialize . 212
15.2.13.4.17 Hash#initialize copy . 213
15.2.13.4.18 Hash#key? . 213
15.2.13.4.19 Hash#keys . 213
15.2.13.4.20 Hash#length . 214
15.2.13.4.21 Hash#member? . 214
15.2.13.4.22 Hash#merge . 214
15.2.13.4.23 Hash#replace . 215

xi

15.2.13.4.24 Hash#shift . 215
15.2.13.4.25 Hash#size . 215
15.2.13.4.26 Hash#store . 216
15.2.13.4.27 Hash#value? . 216
15.2.13.4.28 Hash#values . 216

15.2.14 Range . 216
15.2.14.1 General description . 216
15.2.14.2 Direct superclass . 216
15.2.14.3 Included modules . 217
15.2.14.4 Instance methods . 217

15.2.14.4.1 Range#== . 217
15.2.14.4.2 Range#=== . 217
15.2.14.4.3 Range#begin . 218
15.2.14.4.4 Range#each . 218
15.2.14.4.5 Range#end . 219
15.2.14.4.6 Range#exclude end? . 219
15.2.14.4.7 Range#first . 219
15.2.14.4.8 Range#include? . 219
15.2.14.4.9 Range#initialize . 219
15.2.14.4.10 Range#last . 220
15.2.14.4.11 Range#member? . 220

15.2.15 Regexp . 220
15.2.15.1 General description . 220
15.2.15.2 Direct superclass . 221
15.2.15.3 Constants . 221
15.2.15.4 Patterns . 221
15.2.15.5 Matching process . 225
15.2.15.6 Singleton methods . 226

15.2.15.6.1 Regexp.compile . 226
15.2.15.6.2 Regexp.escape . 226
15.2.15.6.3 Regexp.last match . 227
15.2.15.6.4 Regexp.quote . 228

15.2.15.7 Instance methods . 228
15.2.15.7.1 Regexp#initialize . 228
15.2.15.7.2 Regexp#initialize copy . 229
15.2.15.7.3 Regexp#== . 229
15.2.15.7.4 Regexp#=== . 230
15.2.15.7.5 Regexp#=˜ . 230
15.2.15.7.6 Regexp#casefold? . 230
15.2.15.7.7 Regexp#match . 231
15.2.15.7.8 Regexp#source . 231

15.2.16 MatchData . 231
15.2.16.1 General description . 231
15.2.16.2 Direct superclass . 232
15.2.16.3 Instance methods . 232

15.2.16.3.1 MatchData#[] . 232
15.2.16.3.2 MatchData#begin . 232
15.2.16.3.3 MatchData#captures . 232
15.2.16.3.4 MatchData#end . 233
15.2.16.3.5 MatchData#initialize copy . 233
15.2.16.3.6 MatchData#length . 234
15.2.16.3.7 MatchData#offset . 234

xii

15.2.16.3.8 MatchData#post match . 234
15.2.16.3.9 MatchData#pre match . 234
15.2.16.3.10 MatchData#size . 235
15.2.16.3.11 MatchData#string . 235
15.2.16.3.12 MatchData#to a . 235
15.2.16.3.13 MatchData#to s . 235

15.2.17 Proc . 236
15.2.17.1 General description . 236
15.2.17.2 Direct superclass . 236
15.2.17.3 Singleton methods . 236

15.2.17.3.1 Proc.new . 236
15.2.17.4 Instance methods . 236

15.2.17.4.1 Proc#[] . 236
15.2.17.4.2 Proc#arity . 236
15.2.17.4.3 Proc#call . 237
15.2.17.4.4 Proc#clone . 238
15.2.17.4.5 Proc#dup . 238

15.2.18 Struct . 239
15.2.18.1 General description . 239
15.2.18.2 Direct superclass . 239
15.2.18.3 Singleton methods . 239

15.2.18.3.1 Struct.new . 239
15.2.18.4 Instance methods . 241

15.2.18.4.1 Struct#== . 241
15.2.18.4.2 Struct#[] . 241
15.2.18.4.3 Struct#[]= . 242
15.2.18.4.4 Struct#each . 243
15.2.18.4.5 Struct#each pair . 243
15.2.18.4.6 Struct#members . 243
15.2.18.4.7 Struct#select . 243
15.2.18.4.8 Struct#initialize . 244
15.2.18.4.9 Struct#initialize copy . 244

15.2.19 Time . 245
15.2.19.1 General description . 245
15.2.19.2 Direct superclass . 245
15.2.19.3 Time computation . 245

15.2.19.3.1 Day . 245
15.2.19.3.2 Year . 246
15.2.19.3.3 Month . 247
15.2.19.3.4 Days of month . 247
15.2.19.3.5 Hours, Minutes, and Seconds 248

15.2.19.4 Time zone and Local time . 248
15.2.19.5 Daylight saving time . 248
15.2.19.6 Singleton methods . 248

15.2.19.6.1 Time.at . 248
15.2.19.6.2 Time.gm . 249
15.2.19.6.3 Time.local . 251
15.2.19.6.4 Time.mktime . 251
15.2.19.6.5 Time.now . 251
15.2.19.6.6 Time.utc . 252

15.2.19.7 Instance methods . 252
15.2.19.7.1 Time#+ . 252

xiii

15.2.19.7.2 Time#− . 252
15.2.19.7.3 Time#<=> . 253
15.2.19.7.4 Time#asctime . 253
15.2.19.7.5 Time#ctime . 254
15.2.19.7.6 Time#day . 254
15.2.19.7.7 Time#dst? . 255
15.2.19.7.8 Time#getgm . 255
15.2.19.7.9 Time#getlocal . 255
15.2.19.7.10 Time#getutc . 255
15.2.19.7.11 Time#gmt? . 255
15.2.19.7.12 Time#gmt offset . 256
15.2.19.7.13 Time#gmtime . 256
15.2.19.7.14 Time#gmtoff . 256
15.2.19.7.15 Time#hour . 256
15.2.19.7.16 Time#initialize . 256
15.2.19.7.17 Time#initialize copy . 257
15.2.19.7.18 Time#localtime . 257
15.2.19.7.19 Time#mday . 257
15.2.19.7.20 Time#min . 258
15.2.19.7.21 Time#mon . 258
15.2.19.7.22 Time#month . 258
15.2.19.7.23 Time#sec . 258
15.2.19.7.24 Time#to f . 259
15.2.19.7.25 Time#to i . 259
15.2.19.7.26 Time#usec . 259
15.2.19.7.27 Time#utc . 259
15.2.19.7.28 Time#utc? . 260
15.2.19.7.29 Time#utc offset . 260
15.2.19.7.30 Time#wday . 260
15.2.19.7.31 Time#yday . 261
15.2.19.7.32 Time#year . 261
15.2.19.7.33 Time#zone . 261

15.2.20 IO . 261
15.2.20.1 General description . 261
15.2.20.2 Direct superclass . 262
15.2.20.3 Included modules . 262
15.2.20.4 Singleton methods . 263

15.2.20.4.1 IO.open . 263
15.2.20.5 Instance methods . 263

15.2.20.5.1 IO#close . 263
15.2.20.5.2 IO#closed? . 264
15.2.20.5.3 IO#each . 264
15.2.20.5.4 IO#each byte . 264
15.2.20.5.5 IO#each line . 265
15.2.20.5.6 IO#eof? . 265
15.2.20.5.7 IO#flush . 265
15.2.20.5.8 IO#getc . 266
15.2.20.5.9 IO#gets . 266
15.2.20.5.10 IO#initialize copy . 266
15.2.20.5.11 IO#print . 266
15.2.20.5.12 IO#putc . 267
15.2.20.5.13 IO#puts . 267

xiv

15.2.20.5.14 IO#read . 268
15.2.20.5.15 IO#readchar . 269
15.2.20.5.16 IO#readline . 269
15.2.20.5.17 IO#readlines . 269
15.2.20.5.18 IO#sync . 270
15.2.20.5.19 IO#sync= . 270
15.2.20.5.20 IO#write . 270

15.2.21 File . 271
15.2.21.1 General description . 271
15.2.21.2 Direct superclass . 271
15.2.21.3 Singleton methods . 271

15.2.21.3.1 File.exist? . 271
15.2.21.4 Instance methods . 271

15.2.21.4.1 File#initialize . 271
15.2.21.4.2 File#path . 272

15.2.22 Exception . 272
15.2.22.1 General description . 272
15.2.22.2 Direct superclass . 273
15.2.22.3 Built-in exception classes . 273
15.2.22.4 Singleton methods . 273

15.2.22.4.1 Exception.exception . 273
15.2.22.5 Instance methods . 274

15.2.22.5.1 Exception#exception . 274
15.2.22.5.2 Exception#message . 274
15.2.22.5.3 Exception#to s . 274
15.2.22.5.4 Exception#initialize . 275

15.2.23 StandardError . 275
15.2.23.1 General description . 275
15.2.23.2 Direct superclass . 275

15.2.24 ArgumentError . 275
15.2.24.1 General description . 275
15.2.24.2 Direct superclass . 275

15.2.25 LocalJumpError . 275
15.2.25.1 Direct superclass . 275
15.2.25.2 Instance methods . 275

15.2.25.2.1 LocalJumpError#exit value 275
15.2.25.2.2 LocalJumpError#reason . 276

15.2.26 RangeError . 276
15.2.26.1 General description . 276
15.2.26.2 Direct superclass . 276

15.2.27 RegexpError . 276
15.2.27.1 General description . 276
15.2.27.2 Direct superclass . 276

15.2.28 RuntimeError . 276
15.2.28.1 General description . 276
15.2.28.2 Direct superclass . 276

15.2.29 TypeError . 276
15.2.29.1 General description . 276
15.2.29.2 Direct superclass . 277

15.2.30 ZeroDivisionError . 277
15.2.30.1 General description . 277
15.2.30.2 Direct superclass . 277

xv

15.2.31 NameError . 277
15.2.31.1 Direct superclass . 277
15.2.31.2 Instance methods . 277

15.2.31.2.1 NameError#name . 277
15.2.31.2.2 NameError#initialize . 277

15.2.32 NoMethodError . 278
15.2.32.1 Direct superclass . 278
15.2.32.2 Instance methods . 278

15.2.32.2.1 NoMethodError#args . 278
15.2.32.2.2 NoMethodError#initialize . 278

15.2.33 IndexError . 279
15.2.33.1 General description . 279
15.2.33.2 Direct superclass . 279

15.2.34 IOError . 279
15.2.34.1 General description . 279
15.2.34.2 Direct superclass . 279

15.2.35 EOFError . 279
15.2.35.1 General description . 279
15.2.35.2 Direct superclass . 279

15.2.36 SystemCallError . 279
15.2.36.1 General description . 279
15.2.36.2 Direct superclass . 279

15.2.37 ScriptError . 279
15.2.37.1 General description . 279
15.2.37.2 Direct superclass . 279

15.2.38 SyntaxError . 280
15.2.38.1 General description . 280
15.2.38.2 Direct superclass . 280

15.2.39 LoadError . 280
15.2.39.1 General description . 280
15.2.39.2 Direct superclass . 280

15.3 Built-in modules . 280
15.3.1 Kernel . 280

15.3.1.1 General description . 280
15.3.1.2 Singleton methods . 280

15.3.1.2.1 Kernel.‘ . 280
15.3.1.2.2 Kernel.block given? . 281
15.3.1.2.3 Kernel.eval . 281
15.3.1.2.4 Kernel.global variables . 281
15.3.1.2.5 Kernel.iterator? . 282
15.3.1.2.6 Kernel.lambda . 282
15.3.1.2.7 Kernel.local variables . 283
15.3.1.2.8 Kernel.loop . 283
15.3.1.2.9 Kernel.p . 283
15.3.1.2.10 Kernel.print . 284
15.3.1.2.11 Kernel.puts . 284
15.3.1.2.12 Kernel.raise . 284
15.3.1.2.13 Kernel.require . 285

15.3.1.3 Instance methods . 286
15.3.1.3.1 Kernel#== . 286
15.3.1.3.2 Kernel#=== . 286
15.3.1.3.3 Kernel# id . 287

xvi

15.3.1.3.4 Kernel# send . 287
15.3.1.3.5 Kernel#‘ . 287
15.3.1.3.6 Kernel#block given? . 287
15.3.1.3.7 Kernel#class . 287
15.3.1.3.8 Kernel#clone . 288
15.3.1.3.9 Kernel#dup . 288
15.3.1.3.10 Kernel#eql? . 289
15.3.1.3.11 Kernel#equal? . 289
15.3.1.3.12 Kernel#eval . 289
15.3.1.3.13 Kernel#extend . 289
15.3.1.3.14 Kernel#global variables . 290
15.3.1.3.15 Kernel#hash . 290
15.3.1.3.16 Kernel#initialize copy . 290
15.3.1.3.17 Kernel#inspect . 291
15.3.1.3.18 Kernel#instance eval . 291
15.3.1.3.19 Kernel#instance of? . 291
15.3.1.3.20 Kernel#instance variable defined? 292
15.3.1.3.21 Kernel#instance variable get 292
15.3.1.3.22 Kernel#instance variable set 292
15.3.1.3.23 Kernel#instance variables . 293
15.3.1.3.24 Kernel#is a? . 293
15.3.1.3.25 Kernel#iterator? . 294
15.3.1.3.26 Kernel#kind of? . 294
15.3.1.3.27 Kernel#lambda . 294
15.3.1.3.28 Kernel#local variables . 294
15.3.1.3.29 Kernel#loop . 294
15.3.1.3.30 Kernel#method missing . 294
15.3.1.3.31 Kernel#methods . 295
15.3.1.3.32 Kernel#nil? . 295
15.3.1.3.33 Kernel#object id . 295
15.3.1.3.34 Kernel#p . 296
15.3.1.3.35 Kernel#print . 296
15.3.1.3.36 Kernel#private methods . 296
15.3.1.3.37 Kernel#protected methods . 297
15.3.1.3.38 Kernel#public methods . 297
15.3.1.3.39 Kernel#puts . 297
15.3.1.3.40 Kernel#raise . 298
15.3.1.3.41 Kernel#remove instance variable 298
15.3.1.3.42 Kernel#require . 298
15.3.1.3.43 Kernel#respond to? . 299
15.3.1.3.44 Kernel#send . 299
15.3.1.3.45 Kernel#singleton methods . 299
15.3.1.3.46 Kernel#to s . 300

15.3.2 Enumerable . 300
15.3.2.1 General description . 300
15.3.2.2 Instance methods . 300

15.3.2.2.1 Enumerable#all? . 300
15.3.2.2.2 Enumerable#any? . 301
15.3.2.2.3 Enumerable#collect . 301
15.3.2.2.4 Enumerable#detect . 302
15.3.2.2.5 Enumerable#each with index 302
15.3.2.2.6 Enumerable#entries . 303

xvii

15.3.2.2.7 Enumerable#find . 303
15.3.2.2.8 Enumerable#find all . 303
15.3.2.2.9 Enumerable#grep . 303
15.3.2.2.10 Enumerable#include? . 304
15.3.2.2.11 Enumerable#inject . 304
15.3.2.2.12 Enumerable#map . 305
15.3.2.2.13 Enumerable#max . 305
15.3.2.2.14 Enumerable#min . 306
15.3.2.2.15 Enumerable#member? . 307
15.3.2.2.16 Enumerable#partition . 307
15.3.2.2.17 Enumerable#reject . 307
15.3.2.2.18 Enumerable#select . 308
15.3.2.2.19 Enumerable#sort . 308
15.3.2.2.20 Enumerable#to a . 309

15.3.3 Comparable . 309
15.3.3.1 General description . 309
15.3.3.2 Instance methods . 309

15.3.3.2.1 Comparable#< . 309
15.3.3.2.2 Comparable#<= . 309
15.3.3.2.3 Comparable#== . 310
15.3.3.2.4 Comparable#> . 310
15.3.3.2.5 Comparable#>= . 310
15.3.3.2.6 Comparable#between? . 310

xviii

Introduction

This document specifies the Ruby programming language.

Ruby is an object-oriented scripting language, which has been developed by Yukihiro Matsumoto
and his contributors since 1993, and has several implementations distributed as open source
software. Ruby has both enough features as an object-oriented language and simplicity as a
scripting language, and advanced applications can be implemented with brief code in Ruby.
These characteristics of Ruby enables high productivity of program development.

Ruby is thus used for many applications and network systems across the world at the present
day, and has multiple implementations. Therefore, a standard specification which underlies
compatibility among implementations has been demanded.

The biggest goal of Ruby is developer friendliness, and productivity of application development
and intuitive description of program behaviors take precedence over brevity of the language
specification itself and ease of implementation. This document is therefore complex as a language
specification in order to specify the syntax and semantics of Ruby without ambiguity.

xix

Information technology —

Programming Languages — Ruby

1 Scope1

This document specifies the syntax and semantics of the computer programming language Ruby2

and the requirements for conforming Ruby processors, strictly conforming Ruby programs, and3

conforming Ruby programs.4

This document does not specify5

� the limit of size or complexity of a program text which is acceptable to a conforming6

processor,7

� the minimal requirements of a data processing system that is capable of supporting a8

conforming processor,9

� the method for activating the execution of programs on a data processing system, and10

� the method for reporting syntactic and runtime errors.11

NOTE Execution of a Ruby program is to evaluate the program (see 10) by a Ruby processor.12

2 Normative references13

The following referenced documents are indispensable for the application of this document. For14

dated references, only the edition cited applies. For undated references, the latest edition of the15

referenced document (including any amendments) applies.16

� ISO/IEC 646:1991, Information technology – ISO 7-bit coded character set for information17

interchange.18

NOTE Corresponding JIS: JIS X 0201:1997 7-bit and 8-bit coded character sets for information19

interchange (MOD)20

� IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems.21

3 Conformance22

A strictly conforming Ruby program shall23

1

� use only those features of the language specified in this document, and1

� not produce output dependent on any unspecified or implementation-defined behavior.2

A conforming Ruby processor shall3

� accept any strictly conforming programs and behave as specified in this document.4

A conforming Ruby processor may5

� evaluate a strictly conforming program in a different way from the one described in this6

document, if it does not change the behavior of the program; however, if the program7

redefines any method of a built-in class or module (see Clause 15), the behavior of the8

program may be different from the one described in this document, and9

NOTE For example, a conforming processor may omit an invocation of a method of a built-in10

class or module for optimization purpose, and do the same calculation as the method instead. In11

this case, even if a program redefines the method, the behavior of the program might not change12

because the redefined method might not actually be invoked.13

� support syntax not described in this document, and accept any programs which use features14

not specified in this document.15

A conforming Ruby program is one that is acceptable to a conforming Ruby processor.16

4 Terms and definitions17

For the purposes of this document, the following terms and definitions apply. Other terms are18

defined where they appear in bold slant face or on the left side of a syntax rule.19

4.120

block21

A procedure which is passed to a method invocation.22

4.223

class24

An object which defines the behavior of a set of other objects called its instances.25

NOTE The behavior is a set of methods which can be invoked on an instance.26

4.327

class variable28

A variable whose value is shared by all the instances of a class.29

4.430

constant31

A variable which is defined in a class or a module and is accessible both inside and outside the32

class or module.33

NOTE The value of a constant is ordinarily expected to remain unchanged during the execution of a34

program, but this document does not force it.35

2

4.51

exception2

An object which represents an exceptional event.3

4.64

global variable5

A variable which is accessible everywhere in a program.6

4.77

implementation-defined8

Possibly differing between implementations, but defined for every implementation.9

4.810

instance method11

A method which can be invoked on all the instances of a class.12

4.913

instance variable14

A variable that exists in a set of variable bindings which every object has.15

4.1016

local variable17

A variable which is accessible only in a certain scope introduced by a program construct such as18

a method definition, a block, a class definition, a module definition, a singleton class definition,19

or the toplevel of a program.20

4.1121

method22

A procedure which, when invoked on an object, performs a set of computations on the object.23

4.1224

method visibility25

An attribute of a method which determines the conditions under which a method invocation is26

allowed.27

4.1328

module29

An object which provides features to be included into a class or another module.30

4.1431

object32

A computational entity which has states and a behavior.33

NOTE The behavior of an object is a set of methods which can be invoked on the object.34

4.1535

singleton class36

An object which can modify the behavior of its associated object.37

NOTE A singleton class is ordinarily associated with a single object. However, a conforming processor38

may associate a singleton class with multiple objects as described in 13.4.1.39

4.1640

3

singleton method1

An instance method of a singleton class.2

4.173

unspecified4

Possibly differing between implementations, and not necessarily defined for any particular im-5

plementation.6

4.187

variable8

A computational entity that refers to an object, which is called the value of the variable.9

4.1910

variable binding11

An association between a variable and an object which is referred to by the variable.12

5 Notational conventions13

5.1 General description14

In this clause, the following terms are used:15

a) sequence of A16

A “sequence of A”, whose length is n, indicates a sequence whose n elements A1, A2, . . . , An17

(n ≥ 0) are of the same kind A. A sequence whose length is 0 is called an empty sequence.18

b) sequence of A separated by B19

A “sequence of A separated by B”, whose length is n+1, indicates a sequence whose n + 120

elements A0, A1, A2, . . . , An (n ≥ 0) are of the same kind A and whose adjacent elements21

are separated by B1, B2, . . . , Bn of the same kind B as follows: A0, B1, A1, B2, . . . , Bn,22

An.23

5.2 Syntax24

5.2.1 General description25

In this document, the syntax of the Ruby language is specified by syntactic rules which are26

a series of productions (see 5.2.2), and constraints of syntax written in a natural language.27

Syntactic rules are given in some subclauses, and are entitled “Syntax”.28

5.2.2 Productions29

Each production is of the following form, where X is a nonterminal symbol [see 5.2.4 b)], and Y30

is a sequence of syntactic term sequences (see 5.2.3）separated by a vertical line (|), and where31

whitespace and newlines are used for the sake of readability:32

X :: Y33

A production defines a set of sequences of characters represented by a nonterminal symbol X34

as a union of sets represented by syntactic term sequences in Y. The production X :: Y is35

therefore called “the production of X ” or “the X production.” X is called the left hand side of36

4

the production, and Y is called the right hand side of the production. The nonterminal symbol1

X is said to directly refer to nonterminal symbols which appear in Y. A relationship that a2

nonterminal symbol A refers to a nonterminal symbol B is defined recursively as follows:3

� If A directly refers to B, then A refers to B ;4

� If A refers to a nonterminal symbol C, and if C refers to B, then A refers to B.5

NOTE 1 A syntactic term represents a set of sequences of characters as described in 5.2.3.6

In a constraint written in a natural language in a syntactic rule, or in a semantic rule (see 5.3),7

“X ”, where X is a syntactic term sequence, indicates an elmement of the set of sequences of8

characters represented by the syntactic term sequence X. Especially in the case that X is a non-9

terminal symbol Y, “Y ” indicates an elmement of the set of sequences of characters represented10

by the nonterminal symbol, and “the nonterminal symbol Y ” indicates the nonterminal symbol11

itself. A sequence of characters represented by “Y ” is also called “of the form Y.”12

When a nonterminal symbol Y directly refers to a nonterminal symbol Z, “Z of Y ” indicates a13

part of a sequence of characters represented by Y, which is represented by such Z.14

NOTE 2 For example，a sequence x of characters represented by X whose production is “X :: Y Z”15

consist of a sequence y of characters represented by Y and a sequence z of characters represented by Z,16

and x = yz. In this case, “Z of X ” indicates z.17

“Z in Y ” indicates a part of a sequence of characters represented by Y, which is represented by18

Z referred to by the nonterminal symbol Y.19

“Each Z of Y ” indicates a sequence of characters defined by the following a) to c):20

a) This notation is used when Z appears in a primary term P (see 5.2.4), and the right hand21

side of the production of Y contains zero or more repetitions of P [see 5.2.4 f)] (i.e., P∗).22

b) Let Yn (n ≥ 0) be the right hand side of the production of Y, where P∗ is replaced with a23

sequence of Ps whose length is n. For any sequence y of characters represented by Y, there24

exists i such that a sequence of characters represented by Yi is y.25

c) “Each Z of Y ” indicates a part of y represented by Z which appears repeatedly in Yi.26

If the number of Z referred to by Y in productions in a subclause is only one, “Z” is used as a27

short form of “Z of Y ” or “Z in Y.”28

The nonterminal symbols input-element (see 8.1), program (see 10.1), and pattern (see 15.2.15.4)29

are called start symbols.30

EXAMPLE 1 The following example is the input-element production. This production means an input-31

element is any of a line-terminator, whitespace, comment, end-of-program-marker, or token.32

input-element ::33

line-terminator34

| whitespace35

| comment36

| end-of-program-marker37

| token38

5

EXAMPLE 2 Y and Z are defined as follows:1

Y ::2

Z (# Z)∗3

Z ::4

a | b | (Y)5

In this case, for each following sequence of characters represented by Y, “each Z of Y ” indicates each6

underlined part.7

a8

a#b9

a#b#a10

(a#b)11

a#(a#b)#a12

5.2.3 Syntactic term sequences13

A syntactic term sequence is a sequence of syntactic terms (see 5.2.4). A syntactic term sequence14

S, which is a sequence T1 T2 . . .Tn (n ≥ 1), where Ti (1 ≤ i ≤ n) is a syntactic term, represents15

a set of all sequences of characters of the form t1 t2 . . . tn, where ti is any element of the set of16

sequences of characters represented by Ti. However, if Ti is a special term, the meaning of ti is17

defined in 5.2.4 d).18

Line-terminators (see 8.3), whitespace (see 8.4), and comments (see 8.5) are used to separate19

tokens (see 8.7), and are ordinarily ignored. Line-terminators, whitespace, and comments are20

therefore omitted in the right hand side of productions except in Clause 8 and 15.2.15.4. That21

is, in the right hand side of productions, the following syntactic term is omitted before and after22

terms.23

(line-terminator | whitespace | comment)∗24

However, a location where a line-terminator or whitespace shall not occur, or a location where25

a line-terminator or whitespace shall occur is indicated by special terms: a forbidden term [see26

5.2.4 d) 2)] or a mandatory term [see 5.2.4 d) 3)], respectively.27

EXAMPLE The following example represents a sequence of characters: alias [a terminal symbol, see28

5.2.4 a)]，new-name, and aliased-name, in this order. However, there might be any number of line-29

terminators, whitespace characters, and/or comments between these elements.30

alias new-name aliased-name31

6

5.2.4 Syntactic terms1

A syntactic term represents a sequence of characters, or a constraint to a sequence of characters2

represented by a syntactic term sequence which includes the syntactic term. A syntactic term3

is any of the following a) to h). In particular, syntactic terms a) to c) are called primary terms.4

NOTE Note that a syntactic term is specified recursively.5

a) terminal symbol6

A terminal symbol is shown in typewriter face. A terminal symbol represents a set whose7

only element is a sequence of characters shown in typewriter face.8

EXAMPLE 1 + represents a sequence of one character “+”. def represents a sequence of three9

characters “def”.10

b) nonterminal symbol11

A nonterminal symbol is shown in italic face. A nonterminal symbol represents a set of12

sequences of characters defined by the production of the nonterminal symbol.13

EXAMPLE 2 A binary-digit defined by the following production represents “0” or “1”.14

binary-digit ::15

0 | 116

c) grouping term17

A grouping term is a sequence of syntactic term sequences separated by a vertical line (|)18

and enclosed by parentheses [()]. A grouping term represents a union of sets of sequences19

of characters represented by syntactic term sequences in the grouping term.20

EXAMPLE 3 The following example represents an alpha-numeric-character or a line-terminator.21

(alpha-numeric-character | line-terminator)22

d) special term23

A special term is a text enclosed by square brackets ([]). A special term is any of the24

following:25

1) negative lookahead26

The notation of a negative lookahead is [lookahead /∈ S], where S is a sequence of27

terminal symbols separated by a comma (,) enclosed by curly brackets ({ }). A negative28

lookahead represents a constraint that any sequence of characters in S shall not occur29

just after the negative lookahead.30

EXAMPLE 4 The following example means that an argument-without-parentheses shall not31

begin with “{”:32

7

argument-without-parentheses ::1

[lookahead /∈ { { }] argument-list2

2) forbidden term3

The notation of a forbidden term is [no T here], where T is a primary term. A forbidden4

term represents a constraint that no T shall occur there.5

EXAMPLE 5 The following example means no line-terminator shall occur there.6

[no line-terminator here]7

3) mandatory term8

The notation of a mandatory term is [T here], where T is a primary term. A mandatory9

term represents a constraint that one or more T s shall occur there.10

EXAMPLE 6 The following example means one or more line-terminators shall occur there.11

[line-terminator here]12

4) other special term13

The notation of an other speical term is [U], where U is a text which does not match14

any of d) 1) to d) 3). This special term represents a set of sequences of characters rep-15

resented by U, or a constraint represented by U to a sequence of characters represented16

by a syntactic term sequence which includes this special term.17

EXAMPLE 7 The following example means that a source-character is any character specified18

in ISO/IEC 646:1991 IRV:19

source-character ::20

[any character in ISO/IEC 646:1991 IRV]21

EXAMPLE 8 The following example means =begin shall occur at the beginning of a line.22

[beginning of a line] =begin23

e) optional term24

An optional term is a primary term postfixed with a superscripted question mark (?).25

An optional term represents a superset of the set represented by the primary term, which26

has an empty sequence of characters as the only additional element.27

8

EXAMPLE 9 The following example means that the block is optional.1

block ?
2

f) zero or more repetitions3

A primary term postfixed with a superscripted asterisk (∗) indicates zero or more repetitions4

of the primary term. Zero or more repetitions represent a set of sequences of characters5

whose elements are all sequences of any zero or more elements of the set represented by the6

primary term.7

EXAMPLE 10 The following example means a sequence of characters which consists of zero or8

more elsif-clauses.9

elsif-clause ∗
10

g) one or more repetitions11

A primary term postfixed with a superscripted plus sign (+) indicates one or more repeti-12

tions of the primary term. One or more repetitions represent a set of sequences of characters13

whose elements are all sequences of any one or more elements of the set represented by the14

primary term.15

EXAMPLE 11 The following example means a sequence of characters which consists of one or16

more when-clauses.17

when-clause +
18

h) exception term19

An exception term is a sequences of a primary term P1, the phrase but not, and another20

primary term P2. An exception term represents a set of sequences of characters whose21

elements are all elements of P1 excluding all elements of P2.22

EXAMPLE 12 The following exmaple represents a source-character but not a single-quoted-string-23

meta-character.24

source-character but not single-quoted-string-meta-character25

5.2.5 Conceptual names26

A nonterminal symbol (except start symbols) which is not referred to by any start symbol is27

called a conceptual name. In the production of a conceptual name, ::= is used instead of :: to28

distinguish conceptual names from other nonterminal symbols.29

NOTE 1 In this document, some semantically related nonterminal symbols are syntactically away from30

each other. Conceptual names are used to define names which organize such nonterminal symbols [e.g.,31

9

assignment (see 11.4.2]). Conceptual names are also used to define nonterminal symbols used only in1

semantic rules [e.g., binary-operator (see 11.4.4)].2

EXAMPLE 1 The following example defines the conceptual name assignment, which can be used to3

mention either assignment-expression or assignment-statement.4

assignment ::=5

assignment-expression6

| assignment-statement7

5.3 Semantics8

For syntactic rules, corresponding semantic rules are given in some subclauses, and are entitled9

“Semantics”. In this document, the behaviors of programs are specified by processes evaluating10

the programs. The evaluation of a program construct, which is a sequence of characters repre-11

sented by a nonterminal symbol, usually results in a value, which is called the (resulting) value12

of the program construct. Semantic rules specify the ways of evaluating program constructs13

specified in corresponding syntactic rules, and the resulting values of the evaluations.14

The start of evaluation steps of a program construct described in semantic rules is called the15

start of the evaluation of the program construct. The time when there is no evaluation step to16

be taken for the program construct is called the end of the evaluation of the program construct.17

If the evaluation of a program construct has started, and if the evaluation has not ended, the18

program construct is said to be under evaluation.19

If there is no semantic rule corresponding to a nonterminal symbol X, and if the right hand side20

of the production of X is a sequence of other nonterminal symbols separated by a vertical line21

(|), the semantic rule of X is defined by the semantic rules of other nonterminal symbols referred22

to by X.23

EXAMPLE 1 A variable (see 11.5.4) has the following production, and has no description of semantic24

rules.25

variable ::26

constant-identifier27

| global-variable-identifier28

| class-variable-identifier29

| instance-variable-identifier30

| local-variable-identifier31

In this case, the semantic rule of variable is defined by the semantic rule of constant-identifier, global-32

variable-identifier, class-variable-identifier, instance-variable-identifier, or local-variable-identifier.33

If there is more than one same nonterminal symbol in the right hand side of a production,34

the nonterminal symbols have a subscript to distinguish them in semantic rules (e.g., operator-35

expression1), if necessary.36

The semantic rule of a conceptual name describes the semantic rule of program constructs37

10

which are elements of the set of sequences of characters represented by the conceptual name. In1

semantic rules, “X ”, where X is a conceptual name, indicates a program construct which is an2

element of the set of sequences of characters represented by the nonterminal symbol X.3

EXAMPLE 2 logical-AND-expression (see 11.2.4) has the following production.4

logical-AND-expression ::=5

keyword-AND-expression6

| operator-AND-expression7

Since logical-AND-expression is a conceptual name, a sequence of characters represented by a keyword-8

AND-expression or operator-AND-expression never be recognized as a logical-AND-expression under9

parsing process of a program text. However, keyword-AND-expression and operator-AND-expression10

have similar semantic rules and they are described as the semantic rule of logical-AND-expression. In11

semantic rules, “logical-AND-expression” indicates a program construct represented by a keyword-AND-12

expression or operator-AND-expression.13

5.4 Attributes of execution contexts14

The names of the attributes of execution contexts (see 7.1) are enclosed in double square brackets15

([]).16

EXAMPLE [self] is one of the attributes of execution contexts.17

6 Fundamental concepts18

6.1 Objects19

An object has states and a behavior. An object has a set of bindings of instance variables (see20

6.2.2) as one of its states. Besides the set of bindings of instance variables, an object can have21

some attributes as its states, depending on the class of the object. The behavior of an object is22

defined by a set of methods (see 6.3) which can be invoked on that object. A method is defined23

in a class, a singleton class, or a module (see 6.5).24

Every value directly manipulated by a program is an object. For example, all of the following25

values are objects:26

� A value which is referred to by a variable (see 6.2);27

� A value which is passed to a method as an argument;28

� A value which is returned by a method;29

� A value which is returned as the result of evaluating an expression (see Clause 11), a30

statement (see Clause 12), a compound-statement (see 10.2), or a program (see 10.1).31

Other values are not objects, unless explicitly specified as objects.32

NOTE Primitive values such as integers are also objects. For example, an integer literal (see 8.7.6.2)33

evaluates to an object.34

11

6.2 Variables1

6.2.1 General description2

A variable is denoted by a name, and refers to an object, which is called the value of the variable.3

A variable itself is not an object. While a variable can refer to only one object at a time, an4

object can be referred to by more than one variable at a time.5

A variable is said to be bound to an object if the variable refers to the object. This association6

of a variable with an object is called a variable binding . When a variable with name N is7

bound to an object O, N is called the name of the binding, and O is called the value of the8

binding.9

There are five kinds of variables:10

� instance variables (see 6.2.2);11

� constants (see 6.5.2);12

� class variables (see 6.5.2);13

� local variables (see 9.2);14

� global variables (see 9.3).15

Any variable can be bound to any kind of object.16

EXAMPLE In the following program, first, the local variable x refers to an integer, then it refers to a17

string, finally it refers to an array.18

x = 12319

x = "abc"20

x = [1, 2, 3]21

6.2.2 Instance variables22

An object has a set of variable bindings. A variable whose binding is in this set is an instance23

variable of that object. This set of bindings of instance variables represents a state of that24

object.25

An instance variable of an object is not directly accessible outside the object. An instance26

variable is ordinarily accessed through methods called accessors outside the object. In this27

sence, a set of bindings of instance variables is encapsulated in an object.28

EXAMPLE In the following program, the value of the instance variable @value of an instance of the29

class ValueHolder is initialized by the method initialize (see 15.2.3.3.3), and is accessed through the30

accessor method value, and printed by the method puts of the module Kernel (see 15.3.1.2.11). Text31

after # is a comment (see 8.5).32

class ValueHolder33

def initialize(value)34

@value = value35

end36

37

12

def value1

return @value2

end3

end4

5

vh = ValueHolder.new(10) # initialize(10) is invoked.6

puts vh.value7

6.3 Methods8

A method is a procedure which, when invoked on an object, performs a set of computations on9

the object. A method itself is not an object. The behavior of an object is defined by a set of10

methods which can be invoked on that object. A method has one or more (when aliased) names11

associated with it. An association between a name and a method is called a method binding .12

When a name N is bound to a method M, N is called the name of the binding, and M is called13

the value of the binding. A name bound to a method is called the method name. A method14

can be invoked on an object by specifying one of its names. The object on which the method is15

invoked is called the receiver of the method invocation.16

EXAMPLE In a method invocation obj.method(arg1, arg2), obj is called the receiver, and method17

is called the method name. See 11.3 for method invocation expressions.18

Methods are described further in 13.3.19

6.4 Blocks20

A block is a procedure which is passed to a method invocation. The block passed to a method21

invocation is called zero or more times in the method invocation.22

A block itself is not an object. However, a block can be represented by an object which is an23

instance of the class Proc (see 15.2.17).24

EXAMPLE 1 In the following program, for each element of an array, the block “{ |i| puts i }” is25

called by the method each of the class Array (see 15.2.12.5.10).26

a = [1, 2, 3]27

a.each { |i| puts i }28

EXAMPLE 2 In the following program, an instance of the class Proc which represents the block29

“{ puts "abc" }” is created, and is called by the method call of the class Proc (see 15.2.17.4.3).30

x = Proc.new { puts "abc" }31

x.call32

Blocks are described further in 11.3.3.33

6.5 Classes, singleton classes, and modules34

6.5.1 General description35

Behaviors of objects are defined by classes, singleton classes, and modules. A class defines36

methods shared by objects of the same class. A singleton class is associated to an object, and37

can modify the behavior of that object. A module defines, and provides methods to be included38

into classes and other modules. Classes, singleton classes, and modules are themselves objects,39

which are dynamically created and modified at run-time.40

13

6.5.2 Classes1

A class is itself an object, and creates other objects. The created objects are called direct2

instances of the class (see 13.2.4).3

A class defines a set of methods which, unless overridden (see 13.3.1), can be invoked on all the4

instances of the class. These methods are instance methods of the class.5

A class is itself an object, and created by evaluation of a program construct such as a class-6

definition (see 13.2.2). A class has two sets of variable bindings besides a set of bindings of7

instance variables. The one is a set of bindings of constants. The other is a set of bindings of8

class variables, which represents the state shared by all the instances of the class.9

The constants, class variables, singleton methods and instance methods of a class are called the10

features of the class.11

EXAMPLE 1 The class Array (see 15.2.12) is itself an object, and can be the receiver of a method12

invocation. An invocation of the method new on the class Array creates an object called a direct instance13

of the class Array.14

EXAMPLE 2 In the following program, the instance method push of the class Array (see 15.2.12.5.22)15

is invoked on an instance of the class Array.16

a = Array.new17

a.push(1, 2, 3) # The value of a is changed to [1, 2, 3].18

EXAMPLE 3 In the following program, the class X is defined by a class definition. The class variable19

@@a is shared by instances of the class X.20

class X21

@@a = "abc"22

23

def print_a24

puts @@a25

end26

27

def set_a(value)28

@@a = value29

end30

end31

x1 = X.new32

x1.print_a # prints abc33

x2 = X.new34

x2.set_a("def")35

x2.print_a # prints def36

x1.print_a # prints def37

Classes are described further in 13.2.38

6.5.3 Singleton classes39

Every object, including classes, can be associated with at most one singleton class. The singleton40

class defines methods which can be invoked on that object. Those methods are singleton methods41

of the object. If the object is not a class, the singleton methods of the object can be invoked42

only on that object. If the object is a class, singleton methods of the class can be invoked only43

on that class and its subclasses (see 6.5.4).44

14

A singleton class is created, and associated with an object by a singleton class definition (see1

13.4.2) or a singleton method definition (see 13.4.3).2

EXAMPLE 1 In the following program, the singleton class of x is created by a singleton class definition.3

The method show is called a singleton method of x, and can be invoked only on x.4

x = "abc"5

y = "def"6

7

The definition of the singleton class of x8

class << x9

def show10

puts self # prints the receiver11

end12

end13

14

x.show # prints abc15

y.show # raises an exception16

EXAMPLE 2 In the following program, the same singleton method show as EXAMPLE 1 is defined17

by a singleton method definition. The singleton class of x is created implicitly by the singleton method18

definition.19

x = "abc"20

21

The definition of a singleton method of x22

def x.show23

puts self # prints the receiver24

end25

26

x.show27

EXAMPLE 3 In the following program, the singleton method a of the class X is defined by a singleton28

method definition.29

class X30

The definition of a singleton method of the class X31

def X.a32

puts "The method a is invoked."33

end34

end35

X.a36

NOTE Singleton methods of a class is similar to so-called class methods in other object-oriendted37

languages because they can be invoked on that class.38

Singleton classes are described further in 13.4.39

6.5.4 Inheritance40

A class has at most one single class as its direct superclass. If a class A has a class B as its41

direct superclass, A is called a direct subclass of B.42

All the classes in a program, including built-in classes, form a rooted tree called a class inher-43

itance tree, where the parent of a class is its direct superclass, and the children of a class are44

all its direct subclasses. There is only one class which does not have a superclass. It is the root45

15

of the tree. All the ancestors of a class in the tree are called superclasses of the class. All the1

descendants of a class in the tree are called subclasses of the class.2

A class inherits constants, class variables, singleton methods, and instance methods from its3

superclasses, if any (see 13.2.3). If an object C is a direct instance of a class D, C is called an4

instance of D and all its superclasses.5

EXAMPLE The following program defines three classes: the class X, the class Y, and the class Z.6

class X7

end8

9

class Y < X10

end11

12

class Z < Y13

end14

The class X is called the direct superclass of the class Y, and the class Y is called a direct subclass of the15

class X. The class Y inherits features from the class X. The class X is called a superclass of the class Z, and16

the class Z is called a subclass of the class X. The class Z inherits features from the class X and the class17

Y. A direct instance of the class Z is called an instance of the class X, the class Y, and the class Z.18

6.5.5 Modules19

Multiple inheritance of classes is not permitted. That is, a class can have only one direct20

superclass. However, features can be appended to a class from multiple modules by using21

module inclusions.22

A module is an object which has the same structure as a class except that it cannot create an23

instance of itself and cannot be inherited. As with classes, a module has a set of constants, a24

set of class variables, and a set of instance methods. Instance methods, constants, and class25

variables defined in a module can be used by other classes, modules, and singleton classes by26

including the module into them.27

While a class can have only one direct superclass, a class, a module, or a singleton class can28

include multiple modules. Instance methods defined in a module can be invoked on an instance29

of a class which includes the module. A module is created by a module definition (see 13.1.2).30

EXAMPLE The following example is not a strictly conforming Ruby program, because a class cannot31

have multiple direct superclasses.32

class Stream33

end34

35

class ReadStream < Stream36

def read(n)37

reads n bytes from a stream38

end39

end40

41

class WriteStream < Stream42

def write(str)43

writes str to a stream44

end45

end46

16

1

class ReadWriteStream < ReadStream, WriteStream2

end3

Instead, a class can include multiple modules. The following example uses module inclusion instead of4

multiple inheritance.5

class Stream6

end7

8

module Readable9

def read(n); end10

end11

12

module Writable13

def write(str); end14

end15

16

class ReadStream < Stream17

include Readable18

end19

20

class WriteStream < Stream21

include Writable22

end23

24

class ReadWriteStream25

include Readable26

include Writable27

end28

Modules are described further in 13.1.29

6.6 Boolean values30

An object is classified into either a trueish object or a falseish object.31

Only false and nil are falseish objects. false is the only instance of the class FalseClass (see32

15.2.6), to which a false-expression evaluates (see 11.5.4.8.3). nil is the only instance of the class33

NilClass (see 15.2.4), to which a nil-expression evaluates (see 11.5.4.8.2).34

Objects other than false and nil are classified into trueish objects. true is the only instance of35

the class TrueClass (see 15.2.5), to which a true-expression evaluates (see 11.5.4.8.3).36

7 Execution contexts37

7.1 General description38

An execution context is a set of attributes which affects evaluation of a program.39

An execution context is not a part of the Ruby language. It is defined in this document only for40

the description of the semantics of a program. A conforming processor shall evaluate a program41

producing the same result as if the processor acted within an execution context in the manner42

described in this document.43

17

An execution context consists of a set of attributes as described below. Each attribute of an1

execution context except [global-variable-bindings] forms a stack. Attributes of an execution2

context are changed when a program construct is evaluated.3

The following are the attributes of an execution context:4

[self] : A stack of objects. The object at the top of the stack is called the current self ,5

to which a self-expression evaluates (see 11.5.4.8.4).6

[class-module-list] : A stack of lists of classes, modules, or singleton classes. The class or7

module at the head of the list which is on the top of the stack is called the current class8

or module.9

[default-method-visibility] : A stack of visibilities of methods, each of which is one of the10

public, private, and protected visibility. The top of the stack is called the current11

visibility .12

[local-variable-bindings] : A stack of sets of bindings of local variables. The element at the13

top of the stack is called the current set of local variable bindings. A set of bindings14

is pushed onto the stack on every entry into a local variable scope (see 9.2), and the top15

element is removed from the stack on every exit from the scope. The scope with which16

an element in the stack is associated is called the scope of the set of local variable17

bindings.18

[invoked-method-name] : A stack of names by which methods are invoked.19

[defined-method-name] : A stack of names with which the invoked methods are defined.20

NOTE The top elements of [invoked-method-name] and [defined-method-name] are usually the21

same. However, they can be different if an invoked method has an alias name.22

[block] : A stack of blocks passed to method invocations. An element of the stack may23

be block-not-given. block-not-given is the special value which indicates that no block is24

passed to a method invocation.25

[global-variable-bindings] : A set of bindings of global variables.26

7.2 The initial state27

Immediately prior to execution of a program, the attributes of the execution context is initialized28

as follows:29

a) Set [global-variable-bindings] to a newly created empty set.30

b) Create built-in classes and modules as described in Clause 15.31

c) Create an empty stack for each attribute of the execution context except [global-variable-32

bindings] .33

d) Create a direct instance of the class Object and push it onto [self] .34

e) Create a list containing only element, the class Object, and push the list onto [class-module-35

list] .36

18

f) Push the private visibility onto [default-method-visibility] .1

g) Push block-not-given onto [block] .2

8 Lexical structure3

8.1 General description4

Syntax5

input-element ::6

line-terminator7

| whitespace8

| comment9

| end-of-program-marker10

| token11

The program text of a program is first converted into a sequence of input-elements, which are ei-12

ther line-terminators, whitespace, comments, end-of-program-markers, or tokens. When several13

prefixes of the input under the converting process have matching productions, the production14

that matches the longest prefix is selected.15

8.2 Program text16

Syntax17

source-character ::18

[any character in ISO/IEC 646:1991 IRV]19

A program is represented as a program text. A program text is a sequence of source-characters.20

A source-character is a character in ISO/IEC 646:1991 IRV (the International Reference Ver-21

sion). The support for any other character sets and encodings is unspecified.22

Terminal symbols are sequences of those characters in ISO/IEC 646:1991 IRV. Control characters23

in ISO/IEC 646:1991 IRV are represented by two digits in hexadecimal notation prefixed by “0x”,24

where the first and the second digits respectively represent x and y of the notations of the form25

x/y specified in ISO/IEC 646, 5.1.26

EXAMPLE “0x0a” represents the character LF, whose bit combination specified in ISO/IEC 646 is27

0/10.28

8.3 Line terminators29

Syntax30

19

line-terminator ::1

0x0d? 0x0a2

Except in Clause 8 and 15.2.15.4, line-terminators are omitted from productions as described3

in 5.2.3. However, a location where a line-terminator shall not occur, or a location where a4

line-terminator shall occur is indicated by special terms: a forbidden term [see 5.2.4 d) 2)] or a5

mandatory term [see 5.2.4 d) 3)], respectively.6

EXAMPLE statements are separated by separators (see 10.2). The syntax of the separators is as7

follows:8

separator ::9

;10

| [line-terminator here]11

The source12

x = 1 + 213

puts x14

is therefore separated into the two statements “x = 1 + 2” and “puts x” by a line-terminator.15

The source16

x =17

1 + 218

is parsed as the single statement “x = 1 + 2” because “x =” is not a statement. However, the source19

x20

= 1 + 221

is not a strictly conforming Ruby program because a line-terminator shall not occur before = in a single-22

variable-assignment-expression, and “= 1 + 2” is not a statement. The fact that a line-terminator shall23

not occur before = is indicated in the syntax of the single-variable-assignment-expression as follows (see24

11.4.2.2.2):25

single-variable-assignment-expression ::26

variable [no line-terminator here] = operator-expression27

8.4 Whitespace28

Syntax29

20

whitespace ::1

0x09 | 0x0b | 0x0c | 0x0d | 0x20 | line-terminator-escape-sequence2

line-terminator-escape-sequence ::3

\ line-terminator4

Except in Clause 8 and 15.2.15.4, whitespace is omitted from productions as described in 5.2.3.5

However, a location where whitespace shall not occur, or a location where whitespace shall occur6

is indicated by special terms: a forbidden term [see 5.2.4 d) 2)] or a mandatory term [see 5.2.47

d) 3)] , respectively.8

8.5 Comments9

Syntax10

comment ::11

single-line-comment12

| multi-line-comment13

single-line-comment ::14

comment-content ?
15

comment-content ::16

line-content17

line-content ::18

(source-character +) but not (source-character ∗ line-terminator source-character ∗)19

multi-line-comment ::20

multi-line-comment-begin-line multi-line-comment-line ?
21

multi-line-comment-end-line22

multi-line-comment-begin-line ::23

[beginning of a line] =begin rest-of-begin-end-line ? line-terminator24

multi-line-comment-end-line ::25

[beginning of a line] =end rest-of-begin-end-line ?
26

(line-terminator | [end of a program])27

rest-of-begin-end-line ::28

whitespace + comment-content29

multi-line-comment-line ::30

comment-line but not multi-line-comment-end-line31

21

comment-line ::1

comment-content line-terminator2

The notation “[beginning of a line]” indicates the beginning of a program or the position3

immediately after a line-terminator.4

A comment is either a single-line-comment or a multi-line-comment. Except in Clause 8 and5

15.2.15.4, comments are omitted from productions as described in 5.2.3.6

A single-line-comment begins with “#” and continues to the end of the line. A line-terminator7

at the end of the line is not considered to be a part of the comment. A single-line-comment can8

contain any characters except line-terminators.9

A multi-line-comment begins with a line beginning with =begin, and continues until and in-10

cluding a line that begins with =end. Unlike single-line-comments, a line-terminator of a multi-11

line-comment-end-line, if any, is considered to be part of the comment.12

NOTE A line-content is a sequence of source-characters. However, line-terminators are not permitted13

within a line-content as specified in the line-content production.14

8.6 End-of-program markers15

Syntax16

end-of-program-marker ::17

[beginning of a line] __END__ (line-terminator | [end of a program])18

An end-of-program-marker indicates the end of a program. Any source characters after an19

end-of-program-marker are not treated as a program text.20

NOTE END is not a keyword, and can be a local-variable-identifier.21

8.7 Tokens22

8.7.1 General description23

Syntax24

token ::25

keyword26

| identifier27

| punctuator28

| operator29

| literal30

22

8.7.2 Keywords1

Syntax2

keyword ::3

__LINE__ | __ENCODING__ | __FILE__ | BEGIN | END | alias | and | begin4

| break | case | class | def | defined? | do | else | elsif | end5

| ensure | for | false | if | in | module | next | nil | not | or | redo6

| rescue | retry | return | self | super | then | true | undef | unless7

| until | when | while | yield8

Keywords are case-sensitive.9

NOTE LINE , ENCODING , FILE , BEGIN, and END are reserved for future use.10

8.7.3 Identifiers11

Syntax12

identifier ::13

local-variable-identifier14

| global-variable-identifier15

| class-variable-identifier16

| instance-variable-identifier17

| constant-identifier18

| method-only-identifier19

| assignment-like-method-identifier20

local-variable-identifier ::21

(lowercase-character | _) identifier-character ∗
22

global-variable-identifier ::23

$ identifier-start-character identifier-character ∗
24

class-variable-identifier ::25

@@ identifier-start-character identifier-character ∗
26

instance-variable-identifier ::27

@ identifier-start-character identifier-character ∗
28

constant-identifier ::29

uppercase-character identifier-character ∗
30

method-only-identifier ::31

(constant-identifier | local-variable-identifier) (! | ?)32

23

assignment-like-method-identifier ::1

(constant-identifier | local-variable-identifier) =2

identifier-character ::3

lowercase-character4

| uppercase-character5

| decimal-digit6

| _7

identifier-start-character ::8

lowercase-character9

| uppercase-character10

| _11

uppercase-character ::12

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R13

| S | T | U | V | W | X | Y | Z14

lowercase-character ::15

a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r16

| s | t | u | v | w | x | y | z17

decimal-digit ::18

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 919

8.7.4 Punctuators20

Syntax21

punctuator ::22

[|] | (|) | { | } | :: | , | ; | .. | ... | ? | : | =>23

8.7.5 Operators24

Syntax25

operator ::26

! | != | !~ | && | ||27

| operator-method-name28

| =29

| assignment-operator30

operator-method-name ::31

^ | & | | | <=> | == | === | =~ | > | >= | < | <= | << | >> | + | -32

24

| * | / | % | ** | ~ | +@ | -@ | [] | []= | ‘1

assignment-operator ::2

assignment-operator-name =3

assignment-operator-name ::4

&& | || | ^ | & | | | << | >> | + | - | * | / | % | **5

8.7.6 Literals6

8.7.6.1 General description7

literal ::8

numeric-literal9

| string-literal10

| array-literal11

| regular-expression-literal12

| symbol13

8.7.6.2 Numeric literals14

Syntax15

numeric-literal ::16

signed-number17

| unsigned-number18

signed-number ::19

(+ | -) unsigned-number20

unsigned-number ::21

integer-literal22

| float-literal23

integer-literal ::24

decimal-integer-literal25

| binary-integer-literal26

| octal-integer-literal27

| hexadecimal-integer-literal28

decimal-integer-literal ::29

unprefixed-decimal-integer-literal30

| prefixed-decimal-integer-literal31

25

unprefixed-decimal-integer-literal ::1

02

| decimal-digit-except-zero (_? decimal-digit)∗3

prefixed-decimal-integer-literal ::4

0 (d | D) digit-decimal-part5

digit-decimal-part ::6

decimal-digit (_? decimal-digit)∗7

binary-integer-literal ::8

0 (b | B) binary-digit (_? binary-digit)∗9

octal-integer-literal ::10

0 (_ | o | O)? octal-digit (_? octal-digit)∗11

hexadecimal-integer-literal ::12

0 (x | X) hexadecimal-digit (_? hexadecimal-digit)∗13

float-literal ::14

float-literal-without-exponent15

| float-literal-with-exponent16

float-literal-without-exponent ::17

unprefixed-decimal-integer-literal . digit-decimal-part18

float-literal-with-exponent ::19

significand-part exponent-part20

significand-part ::21

float-literal-without-exponent22

| unprefixed-decimal-integer-literal23

exponent-part ::24

(e | E) (+ | -)? digit-decimal-part25

decimal-digit-except-zero ::26

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 927

binary-digit ::28

0 | 129

octal-digit ::30

0 | 1 | 2 | 3 | 4 | 5 | 6 | 731

26

hexadecimal-digit ::1

decimal-digit | a | b | c | d | e | f | A | B | C | D | E | F2

If the previous token of a signed-number is a local-variable-identifier, constant-identifier, or3

method-only-identifier, at least one whitespace character or line-terminator shall be present be-4

tween the local-variable-identifier, constant-identifier, or method-only-identifier, and the signed-5

number.6

EXAMPLE -123 in the following program is a signed-number because there is whitespace between x7

and -123.8

x -1239

In the above program, the method x is invoked with the value of -123 as the argument.10

However, -123 in the following program is separated into the two tokens - and 123 because there is no11

whitespace between x and -123.12

x-12313

In the above program, the method - is invoked on the value of x with the value of 123 as the argument.14

Semantics15

A numeric-literal evaluates to either an instance of the class Integer or a direct instance of the16

class Float.17

NOTE Subclasses of the class Integer may be defined as described in 15.2.8.1.18

An unsigned-number of the form integer-literal evaluates to an instance of the class Integer19

whose value is the value of one of the syntactic term sequences in the integer-literal production.20

An unsigned-number of the form float-literal evaluates to a direct instance of the class Float21

whose value is the value of one of the syntactic term sequences in the float-literal production.22

A signed-number which begins with “+” evaluates to the resulting instance of the unsigned-23

number. A signed-number which begins with “-” evaluates to an instance of the class Integer24

or a direct instance of the class Float whose value is the negated value of the resulting instance25

of the unsigned-number.26

The value of an integer-literal, a decimal-integer-literal, a float-literal, or a significand-part is the27

value of one of the syntactic term sequences in their production.28

The value of a unprefixed-decimal-integer-literal is 0 if it is of the form “0”, otherwise the value29

of the unprefixed-decimal-integer-literal is the value of a sequence of characters, which consist of30

a decimal-digit-except-zero followed by a sequence of decimal-digits, ignoring interleaving “ ”s,31

computed using base 10.32

The value of a prefixed-decimal-integer-literal is the value of the digit-decimal-part.33

The value of a digit-decimal-part is the value of the sequence of decimal-digits, ignoring inter-34

leaving “ ”s, computed using base 10.35

27

The value of a binary-integer-literal is the value of the sequence of binary-digits, ignoring inter-1

leaving “ ”s, computed using base 2.2

The value of an octal-integer-literal is the value of the sequence of octal-digits, ignoring inter-3

leaving “ ”s, computed using base 8.4

The value of a hexadecimal-integer-literal is the value of the sequence of hexadecimal-digits,5

ignoring interleaving “ ”s, computed using base 16. The values of hexadecimal-digits a (or A)6

through f (or F) are 10 through 15, respectively.7

The value of a float-literal-without-exponent is the value of the unprefixed-decimal-integer-literal8

plus the value of the digit-decimal-part times 10−n where n is the number of decimal-digits of9

the digit-decimal-part.10

The value of a float-literal-with-exponent is the value of the significand-part times 10n where n11

is the value of the exponent-part.12

The value of an exponent-part is the negative value of the digit-decimal-part if “-” occurs,13

otherwise, it is the value of the digit-decimal-part.14

See 15.2.8.1 for the range of the value of an instance of the class Integer.15

See 15.2.9.1 for the precision of the value of an instance of the class Float.16

8.7.6.3 String literals17

8.7.6.3.1 General description18

Syntax19

string-literal ::20

single-quoted-string21

| double-quoted-string22

| quoted-non-expanded-literal-string23

| quoted-expanded-literal-string24

| here-document25

| external-command-execution26

Semantics27

A string-literal evaluates to a direct instance of the class String.28

NOTE Some of the string-literals represents a value of an expression (see 8.7.6.3.3), not only the literal29

characters of the program text.30

8.7.6.3.2 Single quoted strings31

Syntax32

28

single-quoted-string ::1

’ single-quoted-string-character ∗ ’2

single-quoted-string-character ::3

single-quoted-string-non-escaped-character4

| single-quoted-escape-sequence5

single-quoted-escape-sequence ::6

single-escape-character-sequence7

| single-quoted-string-non-escaped-character-sequence8

single-escape-character-sequence ::9

\ single-quoted-string-meta-character10

single-quoted-string-non-escaped-character-sequence ::11

\ single-quoted-string-non-escaped-character12

single-quoted-string-meta-character ::13

’ | \14

single-quoted-string-non-escaped-character ::15

source-character but not single-quoted-string-meta-character16

Semantics17

A single-quoted-string consists of zero or more characters enclosed by single quotes. The sequence18

of single-quoted-string-characters within the pair of single quotes represents the content of a19

string as it occurs in a program text literally, except for single-escape-character-sequences. The20

sequence “\\” represents “\”. The sequence “\’” represents “’”.21

NOTE Unlike a single-escape-character-sequence, a single-quoted-string-non-escaped-character-sequence22

represents two characters as it occurs in a program text literally. For example, ’\a’ represents two23

characters \ and a.24

EXAMPLE ’\a\’\\’ represents a string whose content is “\a’\”.25

8.7.6.3.3 Double quoted strings26

Syntax27

double-quoted-string ::28

" double-quoted-string-character ∗ "29

double-quoted-string-character ::30

source-character but not (" | # | \)31

| # [lookahead /∈ { $, @, { }]32

29

| double-escape-sequence1

| interpolated-character-sequence2

double-escape-sequence ::3

simple-escape-sequence4

| non-escaped-sequence5

| line-terminator-escape-sequence6

| octal-escape-sequence7

| hexadecimal-escape-sequence8

| control-escape-sequence9

simple-escape-sequence ::10

\ double-escaped-character11

double-escaped-character ::12

\ | n | t | r | f | v | a | e | b | s13

non-escaped-sequence ::14

\ non-escaped-double-quoted-string-character15

non-escaped-double-quoted-string-character ::16

source-character but not (alpha-numeric-character | line-terminator)17

octal-escape-sequence ::18

\ octal-digit octal-digit ? octal-digit ?
19

hexadecimal-escape-sequence ::20

\ x hexadecimal-digit hexadecimal-digit ?
21

control-escape-sequence ::22

\ (C- | c) control-escaped-character23

control-escaped-character ::24

double-escape-sequence25

| ?26

| source-character but not (\ | ?)27

interpolated-character-sequence ::28

global-variable-identifier29

| # class-variable-identifier30

| # instance-variable-identifier31

| # { compound-statement }32

alpha-numeric-character ::33

uppercase-character34

| lowercase-character35

30

| decimal-digit1

Semantics2

A double-quoted-string consists of zero or more characters enclosed by double quotes. The se-3

quence of double-quoted-string-characters within the pair of double quotes represents the content4

of a string.5

Except for a double-escape-sequence and an interpolated-character-sequence, a double-quoted-6

string-character represents a character as it occurs in a program text.7

A simple-escape-sequence represents a character as shown in Table 1.8

Table 1 – Simple escape sequences

Escape sequence Character code

\\ 0x5c

\n 0x0a

\t 0x09

\r 0x0d

\f 0x0c

\v 0x0b

\a 0x07

\e 0x1b

\b 0x08

\s 0x20

An octal-escape-sequence represents a character the code of which is the value of the sequence9

of octal-digits computed using base 8.10

A hexadecimal-escape-sequence represents a character the code of which is the value of the11

sequence of hexadecimal-digits computed using base 16.12

A non-escaped-sequence represents an implementation-defined character.13

A line-terminator-escape-sequence is used to break the content of a string into separate lines in14

a program text without inserting a line-terminator into the string. A line-terminator-escape-15

sequence does not count as a character of the string.16

A control-escape-sequence represents a character the code of which is computed by performing a17

bitwise AND operation between 0x9f and the code of the character represented by the control-18

escaped-character, except when the control-escaped-character is ?, in which case, the control-19

escape-sequence represents a character the code of which is 127.20

An interpolated-character-sequence is a part of a string-literal which is dynamically evaluated21

when the string-literal in which it is embedded is evaluated. The value of a string-literal which22

contains interpolated-character-sequences is a direct instance of the class String the content of23

which is made from the string-literal where each occurrence of interpolated-character-sequence24

31

is replaced by the content of an instance of the class String which is the dynamically evaluated1

value of the interpolated-character-sequence.2

An interpolated-character-sequence is evaluated as follows:3

a) If it is of the form # global-variable-identifier, evaluate the global-variable-identifier (see4

11.5.4.4). Let V be the resulting value.5

b) If it is of the form # class-variable-identifier, evaluate the class-variable-identifier (see6

11.5.4.5). Let V be the resulting value.7

c) If it is of the form # instance-variable-identifier, evaluate the instance-variable-identifier8

(see 11.5.4.6). Let V be the resulting value.9

d) If it is of the form # { compound-statement }, evaluate the compound-statement (see 10.2).10

Let V be the resulting value.11

e) If V is an instance of the class String, the value of interpolated-character-sequence is V.12

f) Otherwise, invoke the method to s on V with no arguments. Let S be the resulting value.13

g) If S is an instance of the class String, the value of interpolated-character-sequence is S.14

h) Otherwise, the behavior is unspecified.15

EXAMPLE "1 + 1 = #{1 + 1}" represents a string whose content is “1 + 1 = 2”.16

8.7.6.3.4 Quoted non-expanded literal strings17

Syntax18

quoted-non-expanded-literal-string ::19

%q non-expanded-delimited-string20

non-expanded-delimited-string ::21

literal-beginning-delimiter non-expanded-literal-string ∗ literal-ending-delimiter22

non-expanded-literal-string ::23

non-expanded-literal-character24

| non-expanded-delimited-string25

non-expanded-literal-character ::26

non-escaped-literal-character27

| non-expanded-literal-escape-sequence28

non-escaped-literal-character ::29

source-character but not quoted-literal-escape-character30

32

non-expanded-literal-escape-sequence ::1

non-expanded-literal-escape-character-sequence2

| non-escaped-non-expanded-literal-character-sequence3

non-expanded-literal-escape-character-sequence ::4

\ non-expanded-literal-escaped-character5

non-expanded-literal-escaped-character ::6

literal-beginning-delimiter7

| literal-ending-delimiter8

| \9

quoted-literal-escape-character ::10

non-expanded-literal-escaped-character11

non-escaped-non-expanded-literal-character-sequence ::12

\ non-escaped-non-expanded-literal-character13

non-escaped-non-expanded-literal-character ::14

source-character but not non-expanded-literal-escaped-character15

literal-beginning-delimiter ::16

source-character but not alpha-numeric-character17

literal-ending-delimiter ::18

source-character but not alpha-numeric-character19

All literal-beginning-delimiters in a non-expanded-delimited-string shall be the same character.20

All literal-ending-delimiters in a non-expanded-delimited-string shall be the same character.21

If a literal-beginning-delimiter is one of the characters on the left in Table 2, the corresponding22

literal-beginning-delimiter shall be the corresponding character on the right in Table 2. Other-23

wise, the literal-ending-delimiter shall be the same character as the literal-beginning-delimiter.24

Table 2 – Matching literal-beginning-delimiter and literal-ending-delimiter

literal-beginning-delimiter literal-ending-delimiter

{ }

()

[]

< >

The non-expanded-delimited-string of a non-expanded-literal-string in a quoted-non-expanded-25

literal-string applies only when its literal-beginning-delimiter is one of the characters on the left26

in Table 2.27

33

NOTE 1 A quoted-non-expanded-literal-string can have nested brackets in regard to the literal-beginning-1

delimiter and the corresponding literal-ending-delimiter (e.g., %q[[abc] [def]]). Different brackets than2

these two brackets and any escaped brackets are ignored in this nesting. For example, %q[\[abc\)def(]3

represents a direct instance of the class String whose content is “[abc\)def(”. In this case, only [,4

], and \ can be non-expanded-literal-escaped-characters because the literal-beginning-delimiter and the5

corresponding literal-beginning-delimiter are [and] respectively.6

Semantics7

The value of a quoted-non-expanded-literal-string represents a string whose content is the con-8

catenation of the contents represented by the non-expanded-literal-strings of the non-expanded-9

delimited-string of the quoted-non-expanded-literal-string.10

The value of a non-expanded-literal-string represents the content of a string as it occurs in a11

program text literally, except for non-expanded-literal-escape-character-sequences.12

NOTE 1 The content of a string represented by a non-expanded-literal-string contains the literal-13

beginning-delimiter and the literal-ending-delimiter of a non-expanded-delimited-string in the non-expanded-14

literal-string. For example, %q((abc)) represents a direct instance of the class String whose content is15

“(abc)”.16

The value of a non-expanded-literal-escape-character-sequence represents a character as fol-17

lows. The sequence “\\” represents “\”; the sequence “\”literal-beginning-delimiter, a literal-18

beginning-delimiter ; the sequence “\”literal-ending-delimiter, a literal-ending-delimiter.19

8.7.6.3.5 Quoted expanded literal strings20

Syntax21

quoted-expanded-literal-string ::22

% Q? expanded-delimited-string23

expanded-delimited-string ::24

literal-beginning-delimiter expanded-literal-string ∗ literal-ending-delimiter25

expanded-literal-string ::26

expanded-literal-character27

| expanded-delimited-string28

expanded-literal-character ::29

non-escaped-literal-character but not #30

| # [lookahead /∈ { $, @, { }]31

| double-escape-sequence32

| interpolated-character-sequence33

All literal-beginning-delimiters in a expanded-delimited-string shall be the same character. All34

literal-ending-delimiters in a expanded-delimited-string shall be the same character.35

The literal-ending-delimiter shall match the literal-beginning-delimiter as described in 8.7.6.3.4.36

34

The expanded-delimited-string of a expanded-literal-string in a quoted-expanded-literal-string ap-1

plies only when its literal-beginning-delimiter is one of the characters on the left in 8.7.6.3.42

Table 2.3

Semantics4

The value of a quoted-expanded-literal-string represents a string whose content is the concatena-5

tion of the contents represented by the expanded-literal-strings of the expanded-delimited-string6

of the quoted-expanded-literal-string.7

A character in an expanded-literal-string other than a double-escape-sequence or an interpolated-8

character-sequence represents a character as it occurs in a program text. A double-escape-9

sequence and an interpolated-character-sequence represent characters as described in 8.7.6.3.3.10

NOTE The content of a string represented by a expanded-literal-string contains the literal-beginning-11

delimiter and the literal-ending-delimiter of a expanded-delimited-string in the expanded-literal-string.12

For example, “%Q((#{1 + 2}))” represents a string whose content is “(3)”.13

8.7.6.3.6 Here documents14

Syntax15

here-document ::16

heredoc-start-line heredoc-body heredoc-end-line17

heredoc-start-line ::18

heredoc-signifier rest-of-line19

heredoc-signifier ::20

<< heredoc-delimiter-specifier21

rest-of-line ::22

line-content ? line-terminator23

heredoc-body ::24

heredoc-body-line ∗
25

heredoc-body-line ::26

comment-line but not heredoc-end-line27

heredoc-delimiter-specifier ::28

-? heredoc-delimiter29

heredoc-delimiter ::30

non-quoted-delimiter31

| single-quoted-delimiter32

| double-quoted-delimiter33

| command-quoted-delimiter34

35

non-quoted-delimiter ::1

non-quoted-delimiter-identifier2

non-quoted-delimiter-identifier ::3

identifier-character ∗
4

single-quoted-delimiter ::5

’ single-quoted-delimiter-identifier ’6

single-quoted-delimiter-identifier ::7

((source-character source-character ?) but not (’ | line-terminator))∗8

double-quoted-delimiter ::9

" double-quoted-delimiter-identifier "10

double-quoted-delimiter-identifier ::11

((source-character source-character ?) but not (" | line-terminator))∗12

command-quoted-delimiter ::13

‘ command-quoted-delimiter-identifier ‘14

command-quoted-delimiter-identifier ::15

((source-character source-character ?) but not (‘ | line-terminator))∗16

heredoc-end-line ::17

indented-heredoc-end-line18

| non-indented-heredoc-end-line19

indented-heredoc-end-line ::20

[beginning of a line] whitespace ∗ heredoc-delimiter-identifier line-terminator21

non-indented-heredoc-end-line ::22

[beginning of a line] heredoc-delimiter-identifier line-terminator23

heredoc-delimiter-identifier ::24

non-quoted-delimiter-identifier25

| single-quoted-delimiter-identifier26

| double-quoted-delimiter-identifier27

| command-quoted-delimiter-identifier28

The heredoc-signifier, the heredoc-body, and the heredoc-end-line in a here-document are treated29

as a unit and considered to be a single token occurring at the place where the heredoc-signifier30

occurs. The first character of the rest-of-line becomes the head of the input after the here-31

document has been processed.32

36

The form of a heredoc-end-line depends on the presence or absence of the beginning “-” of the1

heredoc-delimiter-specifier.2

If the heredoc-delimiter-specifier begins with “-”, a line of the form indented-heredoc-end-line3

is treated as the heredoc-end-line, otherwise, a line of the form non-indented-heredoc-end-line4

is treated as the heredoc-end-line. In both forms, the heredoc-delimiter-identifier shall be the5

same sequence of characters as it occurs in the corresponding part of heredoc-delimiter.6

If the heredoc-delimiter is of the form non-quoted-delimiter, the heredoc-delimiter-identifier shall7

be the same sequence of characters as the non-quoted-delimiter-identifier ; if it is of the form8

single-quoted-delimiter, the single-quoted-delimiter-identifier ; if it is of the form of double-quoted-9

delimiter, the double-quoted-delimiter-identifier ; if it is of the form of command-quoted-delimiter,10

the command-quoted-delimiter-identifier.11

Semantics12

A here-document evaluates to a direct instance of the class String or the value of the invocation13

of the method ‘.14

The object to which a here-document evaluates is created as follows:15

a) Create a direct instance S of the class String from the heredoc-body, the content of which16

depends on the form of the heredoc-delimiter as follows:17

� If heredoc-delimiter is of the form single-quoted-delimiter, the content of S is the se-18

quence of source-characters of the heredoc-body.19

� If heredoc-delimiter is in any of the forms non-quoted-delimiter, double-quoted-delimiter,20

or command-quoted-delimiter, the content of S is the sequence of characters which is21

represented by the heredoc-body as a sequence of double-quoted-string-characters (see22

8.7.6.3.3).23

b) If the heredoc-delimiter is not of the form command-quoted-delimiter, let V be S.24

c) Otherwise, invoke the method ‘ on the current self with the list of arguments which has25

only one element S. Let V be the resulting value of the method invocation.26

d) V is the object to which the here-document evaluates.27

8.7.6.3.7 External command execution28

Syntax29

external-command-execution ::30

backquoted-external-command-execution31

| quoted-external-command-execution32

backquoted-external-command-execution ::33

‘ backquoted-external-command-execution-character ∗ ‘34

37

backquoted-external-command-execution-character ::1

source-character but not (‘ | # | \)2

| # [lookahead /∈ { $, @, { }]3

| double-escape-sequence4

| interpolated-character-sequence5

quoted-external-command-execution ::6

%x expanded-delimited-string7

The literal-ending-delimiter shall match the literal-beginning-delimiter as described in 8.7.6.3.4.8

Semantics9

An external-command-execution is a form to invoke the method ‘.10

An external-command-execution is evaluated as follows:11

a) If the external-command-execution is of the form backquoted-external-command-execution,12

construct a direct instance S of the class String whose content is a sequence of characters13

represented by backquoted-external-command-execution-characters. A backquoted-external-14

command-execution-character other than a double-escape-sequence or an interpolated-character-15

sequence represents a character as it occurs in a program text. A double-escape-sequence16

and an interpolated-character-sequence represent characters as described in 8.7.6.3.3.17

b) If the external-command-execution is of the form quoted-external-command-execution, con-18

struct a direct instance S of the class String by replacing “%x” with “%Q” and evaluating19

the resulting quoted-expanded-literal-string as described in 8.7.6.3.5.20

c) Invoke the method ‘ on the current self with a list of arguments which has only one element21

S.22

d) The value of the external-command-execution is the resulting value.23

8.7.6.4 Array literals24

Syntax25

array-literal ::26

quoted-non-expanded-array-constructor27

| quoted-expanded-array-constructor28

quoted-non-expanded-array-constructor ::29

%w literal-beginning-delimiter non-expanded-array-content literal-ending-delimiter30

non-expanded-array-content ::31

quoted-array-item-separator-list ? non-expanded-array-item-list ?
32

quoted-array-item-separator-list ?
33

38

non-expanded-array-item-list ::1

non-expanded-array-item (quoted-array-item-separator-list non-expanded-array-item)∗2

quoted-array-item-separator-list ::3

quoted-array-item-separator +
4

quoted-array-item-separator ::5

whitespace6

| line-terminator7

non-expanded-array-item ::8

non-expanded-array-item-character +
9

non-expanded-array-item-character ::10

non-escaped-array-character11

| non-expanded-array-escape-sequence12

non-escaped-array-character ::13

non-escaped-literal-character but not quoted-array-item-separator14

non-expanded-array-escape-sequence ::15

non-expanded-literal-escape-sequence16

| \ quoted-array-item-separator17

quoted-expanded-array-constructor ::18

%W literal-beginning-delimiter expanded-array-content literal-ending-delimiter19

expanded-array-content ::20

quoted-array-item-separator-list ? expanded-array-item-list ?
21

quoted-array-item-separator-list ?
22

expanded-array-item-list ::23

expanded-array-item (quoted-array-item-separator-list expanded-array-item)∗24

expanded-array-item ::25

expanded-array-item-character +
26

expanded-array-item-character ::27

non-escaped-array-item-character28

| # [lookahead /∈ { $, @, { }]29

| expanded-array-escape-sequence30

| interpolated-character-sequence31

non-escaped-array-item-character ::32

source-character but not (quoted-array-item-separator | \ | #)33

39

expanded-array-escape-sequence ::1

double-escape-sequence2

| \ quoted-array-item-separator3

The literal-ending-delimiter shall match the literal-beginning-delimiter as described in 8.7.6.3.4.4

If the literal-beginning-delimiter is none of the characters on the left in 8.7.6.3.4 Table 2, the5

non-escaped-array-item-character shall not be the literal-beginning-delimiter.6

If the literal-beginning-delimiter is one of the characters on the left in 8.7.6.3.4 Table 2, the7

quoted-non-expanded-array-constructor or quoted-expanded-array-constructor shall satisfy the8

following conditions, where C is the quoted-non-expanded-array-constructor or quoted-expanded-9

array-constructor, B is the literal-beginning-delimiter, and E is the literal-ending-delimiter which10

corresponds to B in 8.7.6.3.4 Table 2, and “the number of x in y” means the number of x11

to appear in y except appearances in non-expanded-array-escape-sequences or expanded-array-12

escape-sequences:13

� The number of B in C and the number of E in C are the same.14

� For any substring S of C which starts from the first B and ends before the last E, the15

number of B in S is larger than the number of E in S.16

NOTE The above conditions are for nested brackets in an array-literal. Matching of brackets is ir-17

relevant to the structure of the value of an array-literal. For example, %w[[ab cd][ef]] represents18

["[ab", "cd][ef]"].19

Semantics20

An array-literal evaluates to a direct instance of the class Array as follows:21

a) A quoted-non-expanded-array-constructor is evaluated as follows:22

1) Create an empty direct instance of the class Array. Let A be the instance.23

2) If non-expanded-array-item-list is present, for each non-expanded-array-item of the non-24

expanded-array-item-list, take the following steps:25

i) Create a direct instance S of the class String, the content of which is represented26

by the sequence of non-expanded-array-item-characters.27

A non-expanded-array-item-character represents itself, except in the case of a28

non-expanded-array-escape-sequence. A non-expanded-array-escape-sequence rep-29

resents a character represented by the non-expanded-literal-escape-sequence as de-30

scribed in 8.7.6.3.4, except when the non-expanded-array-escape-sequence is of the31

form \ quoted-array-item-separator. A non-expanded-array-escape-sequence of the32

form \ quoted-array-item-separator represents the quoted-array-item-separator as33

it occurs in a program text literally.34

ii) Append S to A.35

3) The value of the quoted-non-expanded-array-constructor is A.36

40

b) A quoted-expanded-array-constructor is evaluated as follows:1

1) Create an empty direct instance of the class Array. Let A be the instance.2

2) If expanded-array-item-list is present, process each expanded-array-item of the expanded-3

array-item-list as follows:4

i) Create a direct instance S of the class String, the content of which is represented5

by the sequence of expanded-array-item-characters.6

An expanded-array-item-character represents itself, except in the case of an expanded-7

array-escape-sequence and an interpolated-character-sequence. An expanded-array-8

escape-sequence represents a character represented by the double-escape-sequence9

as described in 8.7.6.3.3, except when the expanded-array-escape-sequence is of10

the form \ quoted-array-item-separator. An expanded-array-escape-sequence of the11

form \ quoted-array-item-separator represents the quoted-array-item-separator as12

it occurs in a program text literally. An interpolated-character-sequence represents13

a sequence of characters as described in 8.7.6.3.3.14

ii) Append S to A.15

3) The value of the quoted-expanded-array-constructor is A.16

8.7.6.5 Regular expression literals17

Syntax18

regular-expression-literal ::19

/ regular-expression-body / regular-expression-option ∗
20

| %r literal-beginning-delimiter expanded-literal-string ∗
21

literal-ending-delimiter regular-expression-option ∗
22

regular-expression-body ::23

regular-expression-character ∗
24

regular-expression-character ::25

source-character but not (/ | # | \)26

| # [lookahead /∈ { $, @, { }]27

| regular-expression-unescaped-sequence28

| regular-expression-escape-sequence29

| line-terminator-escape-sequence30

| interpolated-character-sequence31

regular-expression-unescaped-sequence ::32

\ regular-expression-unescaped-character33

regular-expression-unescaped-character ::34

source-character but not (0x0d | 0x0a)35

| 0x0d [lookahead /∈ { 0x0a }]36

41

regular-expression-escape-sequence ::1

\ /2

regular-expression-option ::3

i | m4

Within an expanded-literal-string of a regular-expression-literal, a literal-beginning-delimiter shall5

be the same character as the literal-beginning-delimiter of the regular-expression-literal.6

The literal-ending-delimiter shall match the literal-beginning-delimiter as described in 8.7.6.3.4.7

Semantics8

A regular-expression-literal evaluates to a direct instance of the class Regexp.9

The pattern attribute of an instance of the class Regexp (see 15.2.15.1) resulting from a regular-10

expression-literal is the string represented by regular-expression-characters or expanded-literal-11

strings. The string shall be of the form pattern (see 15.2.15.4).12

A regular-expression-character other than a regular-expression-escape-sequence, line-terminator-13

escape-sequence, or interpolated-character-sequence represents itself as it occurs in a program text14

literally. An expanded-literal-string other than a line-terminator-escape-sequence or interpolated-15

character-sequence represents itself as it occurs in a program text literally.16

A regular-expression-escape-sequence represents the character /.17

A line-terminator-escape-sequence in a regular-expression-character and an expanded-literal-18

string is ignored in the resulting pattern of an instance of the class Regexp.19

An interpolated-character-sequence in a regular-expression-literal and an expanded-literal-string20

is evaluated as described in 8.7.6.3.3, and represents a string which is the content of the resulting21

instance of the class String.22

A regular-expression-option specifies the ignorecase-flag and the multiline-flag attributes of an23

instance of the class Regexp resulting from a regular-expression-literal. If i is present in a regular-24

expression-option, the ignorecase-flag attribute of the resulting instance of the class Regexp is25

set to true. If m is present in a regular-expression-option, the multiline-flag attribute of the26

resulting instance of the class Regexp is set to true.27

The grammar for a pattern of an instance of the class Regexp created from a regular-expression-28

literal is described in 15.2.15.4.29

8.7.6.6 Symbol literals30

Syntax31

symbol ::32

symbol-literal33

| dynamic-symbol34

42

symbol-literal ::1

: symbol-name2

dynamic-symbol ::3

: single-quoted-string4

| : double-quoted-string5

| %s literal-beginning-delimiter non-expanded-literal-string ∗ literal-ending-delimiter6

symbol-name ::7

instance-variable-identifier8

| global-variable-identifier9

| class-variable-identifier10

| constant-identifier11

| local-variable-identifier12

| method-only-identifier13

| assignment-like-method-identifier14

| operator-method-name15

| keyword16

The single-quoted-string, double-quoted-string, or non-expanded-literal-string of the dynamic-17

symbol shall not contain any sequence which represents the character 0x00 in the resulting value18

of the single-quoted-string, double-quoted-string, or non-expanded-literal-string as described in19

8.7.6.3.2, 8.7.6.3.3, or 8.7.6.3.4.20

Within a non-expanded-literal-string, literal-beginning-delimiter shall be the same character as21

the literal-beginning-delimiter of the dynamic-symbol.22

The literal-ending-delimiter shall match the literal-beginning-delimiter as described in 8.7.6.3.4.23

Semantics24

A symbol evaluates to a direct instance of the class Symbol. A symbol-literal evaluates to a direct25

instance of the class Symbol whose name is the symbol-name. A dynamic-symbol evaluates to a26

direct instance of the class Symbol whose name is the content of an instance of the class String27

which is the value of the single-quoted-string (see 8.7.6.3.2), double-quoted-string (see 8.7.6.3.3),28

or non-expanded-literal-string (see 8.7.6.3.4). If the content of the instance of the class String29

contains the character 0x00, a direct instance of the class ArgumentError may be raised.30

9 Scope of variables31

9.1 General description32

The scope of a variable is a set of regions of a program text with which a set of bindings of33

variables is associated.34

Instance variables, constants, and class variables have no scope, and their bindings are searched35

depending on values of attirubtes of execution contexts (see 11.5.4.2, 11.5.4.5, and 11.5.4.6).36

43

9.2 Scope of local variables1

A local variable is referred to by a local-variable-identifier.2

Scopes for local variables are introduced by the following program constructs:3

� program (see 10.1)4

� class-body (see 13.2.2)5

� module-body (see 13.1.2)6

� singleton-class-body (see 13.4.2)7

� method-definition (see 13.3.1) and singleton-method-definition (see 13.4.3), for both of which8

the scope starts with the method-parameter-part and continues up to and including the9

method-body.10

� block (see 11.3.3)11

Let P be any of the above program constructs. Let S be the region of P excluding all the regions12

of any of the above program constructs (except block) nested within P. Then, S is the local13

variable scope which corresponds to the program construct P.14

The scope of a local variable is the local variable scope whose set of local variable bindings15

contains the binding of the local variable, which is resolved as described below.16

Given a local-variable-identifier which is a reference to a local variable, the binding of the local17

variable is resolved as follows:18

a) Let N be the local-variable-identifier. Let B be the current set of local variable bindings.19

b) Let S be the scope of B.20

c) If a binding with name N exists in B, that binding is the resolved binding.21

d) If a binding with name N does not exist in B :22

1) If S is a local variable scope which corresponds to a block :23

i) If the local-variable-identifier occurs as a left-hand-side of a block-parameter-list,24

whether to proceed to the next step or not is implementation-defined.25

ii) Let new B be the element immediately below the current B on [local-variable-26

bindings] , and continue searching for a binding with name N from Step b).27

2) Otherwise, a binding is considered not resolved.28

9.3 Scope of global variables29

The scope of global variables is global in the sense that they are accessible everywhere in a30

program. Global variable bindings are created in [global-variable-bindings] .31

44

10 Program structure1

10.1 Program2

Syntax3

program ::4

compound-statement5

The program text of a strictly conforming program shall be an element of the set of sequences6

of characters represented by the nonterminal symbol program. A conforming processor need not7

accept programs that include program constructs which cannot be evaluated.8

Semantics9

A program is evaluated as follows:10

a) Push an empty set onto [local-variable-bindings] .11

b) Evaluate the compound-statement.12

c) The value of the program is the resulting value.13

d) Restore the execution context by removing the element from the top of [local-variable-14

bindings] .15

10.2 Compound statement16

Syntax17

compound-statement ::18

statement-list ? separator-list ?
19

statement-list ::20

statement (separator-list statement)∗21

separator-list ::22

separator +
23

separator ::24

;25

| [line-terminator here]26

Semantics27

A compound-statement is evaluated as follows:28

45

a) If the statement-list of the compound-statement is omitted, the value of the compound-1

statement is nil.2

b) If the statement-list of the compound-statement is present, evaluate each statement of the3

statement-list in the order it appears in the program text. The value of the compound-4

statement is the value of the last statement of the statement-list.5

11 Expressions6

11.1 General description7

Syntax8

expression ::9

keyword-logical-expression10

An expression is a program construct which make up a statement (see 12). A single expression11

can be a statement as an expression-statement (see 12.2).12

NOTE A difference between an expression and a statement is that an expression is ordinarily used13

where its value is required, but a statement is ordinarily used where its value is not necessarily required.14

However, there are some exceptions. For example, a jump-expression (see 11.5.2.4) does not have a value,15

and the value of the last statement of a compound-statement can be used.16

Semantics17

See 11.2.2 for keyword-logical-expressions.18

11.2 Logical expressions19

11.2.1 General description20

Syntax21

logical-expression ::=22

logical-NOT-expression23

| logical-AND-expression24

| logical-OR-expression25

Any of logical-NOT-expression，logical-AND-expression, and logical-OR-expression is a concep-26

tual name, which is used to organize that of the form using a keyword (e.g., “not x”) and that27

of the form using an operator (e.g, “!x”), because they are syntactically away from each other.28

See 11.2.3 for logical-NOT-expressions. See 11.2.4 for logical-AND-expressions. See 11.2.5 for29

logical-OR-expressions.30

46

11.2.2 Keyword logical expressions1

Syntax2

keyword-logical-expression ::3

keyword-NOT-expression4

| keyword-AND-expression5

| keyword-OR-expression6

See 11.2.3 for keyword-NOT-expressions. See 11.2.4 for keyword-AND-expressions. See 11.2.57

for keyword-OR-expressions.8

11.2.3 Logical NOT expressions9

Syntax10

logical-NOT-expression ::=11

keyword-NOT-expression12

| operator-NOT-expression13

keyword-NOT-expression ::14

method-invocation-without-parentheses15

| operator-expression16

| ! method-invocation-without-parentheses17

| not keyword-NOT-expression18

operator-NOT-expression ::=19

! (method-invocation-without-parentheses | unary-expression)20

Semantics21

A logical-NOT-expression is evaluated as follows:22

a) If it is of the form method-invocation-without-parentheses, evaluate it as described in 11.3.23

b) If it is of the form operator-expression, evaluate it as described in 11.4.24

c) Otherwise:25

1) If it is of the form not keyword-NOT-expression, evaluate the keyword-NOT-expression.26

Let X be the resulting value.27

2) If it is an operator-NOT-expression, evaluate its method-invocation-without-parentheses28

or unary-expression. Let X be the resulting value.29

3) If X is a trueish object, the value of the keyword-NOT-expression or the operator-30

NOT-expression is false.31

47

4) Otherwise, the value of the keyword-NOT-expression or the operator-NOT-expression1

is true.2

d) If it is a operator-NOT-expression, instead of Step c), the operator-NOT-expression may be3

evaluated as follows:4

1) Evaluate the method-invocation-without-parentheses or the unary-expression. Let V be5

the resulting value.6

2) Create an empty list of arguments L. Invoke the method !@ on V with L as the list of7

arguments. The value of the operator-NOT-expression is the resulting value.8

In this case, the processor shall:9

� include the operator !@ in operator-method-name.10

� define an instance method !@ in the class Object, one of its superclasses (see 6.5.4), or11

a module included in the class Object. The method !@ shall not take any arguments12

and shall return true if the receiver is false or nil, and shall return false otherwise.13

11.2.4 Logical AND expressions14

Syntax15

logical-AND-expression ::=16

keyword-AND-expression17

| operator-AND-expression18

keyword-AND-expression ::19

expression [no line-terminator here] and keyword-NOT-expression20

operator-AND-expression ::21

equality-expression22

| operator-AND-expression [no line-terminator here] && equality-expression23

Semantics24

A logical-AND-expression is evaluated as follows:25

a) If the logical-AND-expression is a equality-expression, evaluate the equality-expression as26

described in 11.4.4.27

b) Otherwise:28

1) Evaluate the expression or the operator-AND-expression. Let X be the resulting value.29

2) If X is a trueish object, evaluate the keyword-NOT-expression or equality-expression.30

Let Y be the resulting value. The value of the keyword-AND-expression or the operator-31

AND-expression is Y.32

48

3) Otherwise, the value of the keyword-AND-expression or the operator-AND-expression1

is X.2

11.2.5 Logical OR expressions3

Syntax4

logical-OR-expression ::=5

keyword-OR-expression6

| operator-OR-expression7

keyword-OR-expression ::8

expression [no line-terminator here] or keyword-NOT-expression9

operator-OR-expression ::10

operator-AND-expression11

| operator-OR-expression [no line-terminator here] || operator-AND-expression12

Semantics13

A logical-OR-expression is evaluated as follows:14

a) If the logical-OR-expression is a operator-AND-expression, evaluate the operator-AND-15

expression as described in 11.2.4.16

b) Otherwise:17

1) Evaluate the expression or the operator-OR-expression. Let X be the resulting value.18

2) If X is a falseish object, evaluate the keyword-NOT-expression or the operator-AND-19

expression. Let Y be the resulting value. The value of the keyword-OR-expression or20

operator-OR-expression is Y.21

3) Otherwise, the value of the keyword-OR-expression or operator-OR-expression is X.22

11.3 Method invocation expressions23

11.3.1 General description24

Syntax25

method-invocation-expression ::=26

primary-method-invocation27

| method-invocation-without-parentheses28

| local-variable-identifier29

primary-method-invocation ::30

super-with-optional-argument31

49

| indexing-method-invocation1

| method-only-identifier2

| method-identifier block3

| method-identifier4

[no line-terminator here] [no whitespace here] argument-with-parentheses5

block ?
6

| primary-expression [no line-terminator here] . method-name7

([no line-terminator here] [no whitespace here] argument-with-parentheses)?8

block ?
9

| primary-expression [no line-terminator here] :: method-name10

[no line-terminator here] [no whitespace here] argument-with-parentheses11

block ?
12

| primary-expression [no line-terminator here] :: method-name-except-constant13

block ?
14

method-identifier ::15

local-variable-identifier16

| constant-identifier17

| method-only-identifier18

method-name ::19

method-identifier20

| operator-method-name21

| keyword22

indexing-method-invocation ::23

primary-expression [no line-terminator here] [no whitespace here]24

[indexing-argument-list ?]25

method-name-except-constant ::26

method-name but not constant-identifier27

method-invocation-without-parentheses ::28

command29

| chained-command-with-do-block30

| chained-command-with-do-block (. | ::) method-name31

argument-without-parentheses32

| return-with-argument33

| break-with-argument34

| next-with-argument35

command ::36

super-with-argument37

| yield-with-argument38

| method-identifier argument-without-parentheses39

| primary-expression [no line-terminator here] (. | ::) method-name40

argument-without-parentheses41

50

chained-command-with-do-block ::1

command-with-do-block chained-method-invocation ∗
2

chained-method-invocation ::3

(. | ::) method-name4

| (. | ::) method-name [no line-terminator here] [no whitespace here]5

argument-with-parentheses6

command-with-do-block ::7

super-with-argument-and-do-block8

| method-identifier argument-without-parentheses do-block9

| primary-expression [no line-terminator here]10

(. | ::) method-name argument-without-parentheses do-block11

See 11.5.4.7 for method-invocation-expressions of the form local-variable-identifier.12

If the argument-with-parentheses (see 11.3.2) of a primary-method-invocation is present, and the13

argument-list of the argument-with-parentheses is a block-argument, the block of the primary-14

method-invocation shall be omitted.15

If the argument-without-parentheses of a command-with-do-block is present, and the block-16

argument of the argument-list of the argument-without-parentheses (see 11.3.2) is present, the17

do-block of the command-with-do-block shall be omitted.18

Semantics19

A method-invocation-expression is evaluated as follows:20

a) A primary-method-invocation is evaluated as follows:21

1) If the primary-method-invocation is a super-with-optional-argument (see 11.3.4) or an22

indexing-method-invocation, evaluate it. The value of the primary-method-invocation23

is the resulting value.24

2) i) If the primary-method-invocation is a method-only-identifier, let O be the current25

self and let M be the method-only-identifier. Create an empty list of arguments26

L.27

ii) If the method-identifier of the primary-method-invocation is present:28

I) Let O be the current self and let M be the method-identifier.29

II) If the argument-with-parentheses is present, construct a list of arguments and30

a block from the argument-with-parentheses as described in 11.3.2. Let L be31

the resulting list. Let B be the resulting block, if any.32

If the argument-with-parentheses is omitted, create an empty list of arguments33

L.34

III) If the block is present, let B be the block.35

51

iii) If “.” of the primary-method-invocation is present:1

I) Evaluate the primary-expression and let O be the resulting value. Let M be2

the method-name.3

II) If the argument-with-parentheses is present, construct a list of arguments and4

a block from the argument-with-parentheses as described in 11.3.2. Let L be5

the resulting list. Let B be the resulting block, if any.6

If the argument-with-parentheses is omitted, create an empty list of arguments7

L.8

III) If the block is present, let B be the block.9

iv) If the :: and method-name of the primary-method-invocation are present:10

I) Evaluate the primary-expression and let O be the resulting value. Let M be11

the method-name.12

II) Construct a list of arguments and a block from the argument-with-parentheses13

as described in 11.3.2. Let L be the resulting list. Let B be the resulting block,14

if any.15

III) If the block is present, let B be the block.16

v) If the :: and method-name-except-constant of the primary-method-invocation are17

present:18

I) Evaluate the primary-expression and let O be the resulting value. Let M be19

the method-name-except-constant.20

II) Create an empty list of arguments L.21

III) If the block is present, let B be the block.22

3) Invoke the method M on O with L as the list of arguments and B, if any, as the block.23

(see 13.3.3). The value of the primary-method-invocation is the resulting value.24

b) An indexing-method-invocation is evaluated as follows:25

1) Evaluate the primary-expression. Let O be the resulting value.26

2) If the indexing-argument-list is present, construct a list of arguments from the indexing-27

argument-list as described in 11.3.2. Let L be the resulting list.28

3) If the indexing-argument-list is omitted, Create an empty list of arguments L.29

4) Invoke the method [] on O with L as the list of arguments. The value of the indexing-30

method-invocation is the resulting value.31

c) A method-invocation-without-parentheses is evaluated as follows:32

52

1) If the method-invocation-without-parentheses is a command, evaluate it. The value of1

the method-invocation-without-parentheses is the resulting value.2

2) If the method-invocation-without-parentheses is a return-with-argument, break-with-3

argument or next-with-argument, evaluate it (see 11.5.2.4). The value of the method-4

invocation-without-parentheses is the resulting value.5

3) If the chained-command-with-do-block of the method-invocation-without-parentheses is6

present:7

i) Evaluate the chained-command-with-do-block. Let V be the resulting value.8

ii) If the method-name and the argument-without-parentheses of the method-invocation-9

without-parentheses are present:10

I) Let M be the method-name.11

II) Construct a list of arguments from the argument-without-parentheses as de-12

scribed in 11.3.2 and let L be the resulting list. If the block-argument of the13

argument-list of the argument-without-parentheses is present, let B be the14

block to which the block-argument corresponds [see 11.3.2 e) 6)].15

III) Invoke the method M on V with L as the list of arguments and B, if any, as16

the block.17

IV) Replace V with the resulting value.18

iii) The value of the method-invocation-without-parentheses is V.19

d) A command is evaluated as follows:20

1) If the command is a super-with-argument(see 11.3.4) or a yield-with-argument (see21

11.3.5), evaluate it. The value of the command is the resulting value.22

2) Otherwise:23

i) If the method-identifier of the command is present:24

I) If the method-identifier is a local-variable-identifier, and if the local-variable-25

identifier is considered as a reference to a local variable by the steps in26

11.5.4.7.2), and if the argument-without-parentheses starts with any of &, <<,27

+, -, *, /, and %, the behavior is unspecified.28

NOTE 1 For example, if x is a reference to a local variable, the behavior of “x -1”29

is unspecified. The behavior of “x -1” may be the same as an additive-expression30

(see 11.4.4) of the form “x - 1”.31

II) Let O be the current self and let M be the method-identifier.32

III) Construct a list of arguments from the argument-without-parentheses as de-33

scribed in 11.3.2 and let L be the resulting list.34

53

If the block-argument of the argument-list of the argument-without-parentheses1

is present, let B be the block to which the block-argument corresponds.2

ii) If the primary-expression(see 11.5), method-name, and argument-without-parentheses3

of the command are present:4

I) Evaluate the primary-expression. Let O be the resulting value. Let M be the5

method-name.6

II) Construct a list of arguments from the argument-without-parentheses as de-7

scribed in 11.3.2 and let L be the resulting list.8

If the block-argument of the argument-list of the argument-without-parentheses9

is present, let B be the block to which the block-argument corresponds.10

iii) Invoke the method M on O with L as the list of arguments and B, if any, as the11

block. The value of the command is the resulting value.12

e) A chained-command-with-do-block is evaluated as follows:13

1) Evaluate the command-with-do-block and let V be the resulting value.14

2) For each chained-method-invocation, in the order they appear in the program text, take15

the following steps:16

i) Let M be the method-name of the chained-method-invocation.17

ii) If the argument-with-parentheses is present, construct a list of arguments and a18

block from the argument-with-parentheses as described in 11.3.2 and let L be the19

resulting list. Let B be the resulting block, if any.20

If the argument-with-parentheses is omitted, create an empty list of arguments L.21

iii) Invoke the method M on V with L as the list of arguments and B, if any, as the22

block.23

iv) Replace V with the resulting value.24

3) The value of the chained-command-with-do-block is V.25

f) A command-with-do-block is evaluated as follows:26

1) If the command-with-do-block is a super-with-argument-and-do-block, evaluate it. The27

value of the command-with-do-block is the resulting value.28

2) Otherwise:29

i) If the method-identifier of the command-with-do-block is present:30

I) If the method-identifier is a local-variable-identifier, and if the local-variable-31

identifier is considered as a reference to a local variable by the steps in32

54

11.5.4.7.2), and if the argument-without-parentheses starts with any of &, <<,1

+, -, *, /, and %, the behavior is unspecified.2

NOTE 2 For example, if x is a reference to a local variable, the behavior of “x -1 do end”3

is unspecified.4

II) Otherwise, let O be the current self and let M be the method-identifier.5

ii) If the primary-expression of the command-with-do-block is present, evaluate the6

primary-expression, and let O be the resulting value and let M be the method-7

name.8

iii) Construct a list of arguments from the argument-without-parentheses of the command-9

with-do-block and let L be the resulting list.10

iv) Invoke the method M on O with L as the list of arguments and the do-block as11

the block. The value of the command-with-do-block is the resulting value.12

11.3.2 Method arguments13

Syntax14

method-argument ::=15

indexing-argument-list16

| argument-with-parentheses17

| argument-without-parentheses18

indexing-argument-list ::19

command20

| operator-expression-list ([no line-terminator here] ,)?21

| operator-expression-list [no line-terminator here] , splatting-argument22

| association-list ([no line-terminator here] ,)?23

| splatting-argument24

splatting-argument ::25

* operator-expression26

operator-expression-list ::27

operator-expression ([no line-terminator here] , operator-expression)∗28

argument-with-parentheses ::29

()30

| (argument-list)31

| (operator-expression-list [no line-terminator here] , chained-command-with-do-32

block)33

| (chained-command-with-do-block)34

argument-without-parentheses ::35

[lookahead /∈ { { }] [no line-terminator here] argument-list36

55

argument-list ::1

block-argument2

| splatting-argument (, block-argument)?3

| operator-expression-list [no line-terminator here] , association-list4

([no line-terminator here] , splatting-argument)? ([no line-terminator5

here] , block-argument)?6

| (operator-expression-list | association-list)7

([no line-terminator here] , splatting-argument)? ([no line-terminator8

here] , block-argument)?9

| command10

block-argument ::11

& operator-expression12

If an argument-without-parentheses starts with a sequence of characters which is any of &, <<,13

+, -, *, /, and %:14

� One or more whitespace characters shall be present just before the argument-without-15

parentheses.16

� No whitespace shall be present just after the sequence of characters.17

NOTE These constraints are necessary to distinguish the sequence of characters from binary operators18

(see 11.4.4). For example, “x -y” is considered as a command. However, “x-y” and “x - y” are not19

considered as commands, but as additive-expressions. That is, if x is not a reference to a local variable,20

the behaviors of “x-y” and “x - y” are the same as “x() - y”.21

Semantics22

A method-argument evaluates to two values: an argument list, and a block. These two values23

are used when the method is invoked. However, a method-argument does not have a block value24

depending on evlauation steps.25

A method-argument is evaluated as follows:26

a) An indexing-argument-list is evaluated as follows:27

1) Create an empty list of arguments L.28

2) Evaluate the command, operator-expressions of operator-expression-lists, or the association-29

list and append their values to L in the order they appear in the program text.30

3) If the splatting-argument is present, evaluate it, and concatenate the resulting list of31

arguments to L.32

4) The argument list value of indexing-argument-list is L.33

b) A splatting-argument is evaluated as follows:34

1) Create an empty list of arguments L.35

56

2) Evaluate the operator-expression. Let V be the resulting value.1

3) If V is not an instance of the class Array, the behavior is unspecified.2

4) Append each element of V, in the indexing order, to L.3

5) The argument list value of splatting-argument is L.4

c) An argument-with-parentheses is evaluated as follows:5

1) Create an empty list of arguments L.6

2) If the argument-list is present, evaluate it as described in Step e), and concatenate the7

resulting list of arguments to L. If the block-argument of the argument-list is present,8

the block value of the argument-with-parentheses is the block value of the argument-list.9

3) If the operator-expression-list is present, for each operator-expression of the operator-10

expression-list, in the order they appear in the program text, take the following steps:11

i) Evaluate the operator-expression. Let V be the resulting value.12

ii) Append V to L.13

4) If the chained-command-with-do-block is present, evaluate it. Append the resulting14

value to L.15

5) The argument list value of argument-with-parentheses is L.16

d) An argument-without-parentheses is evaluated as follows:17

1) If the first character of the argument-without-parentheses is (, the behavior is unspec-18

ified.19

2) Evaluate the argument-list as described in Step e).20

3) Let L be the resulting list.21

e) An argument-list is evaluated as follows:22

1) Create an empty list of arguments L.23

2) If the command is present, evaluate it, and append the resulting value to L.24

3) If the operator-expression-list is present, for each operator-expression of the operator-25

expression-list, in the order they appear in the program text, take the following steps:26

i) Evaluate the operator-expression. Let V be the resulting value.27

ii) Append V to L.28

4) If the association-list is present, evaluate it. Append the resulting value to L.29

57

5) If the splatting-argument is present, construct a list of arguments from it and concate-1

nate the resulting list to L.2

6) If the block-argument is present:3

i) Evaluate the operator-expression of the block-argument. Let P be the resulting4

value.5

ii) If P is not an instance of the class Proc, the behavior is unspecified.6

iii) Otherwise, the block value of argument-list is the block which P represents.7

7) The argument list value of argument-list is L.8

11.3.3 Blocks9

Syntax10

block ::11

brace-block12

| do-block13

brace-block ::14

{ block-parameter ? block-body }15

do-block ::16

do block-parameter ? block-body end17

block-parameter ::18

| |19

| ||20

| | block-parameter-list |21

block-parameter-list ::22

left-hand-side23

| multiple-left-hand-side24

block-body ::25

compound-statement26

Whether the left-hand-side (see 11.4.2.4) in the block-parameter-list is allowed to be of the27

following forms is implementation-defined.28

� constant-identifier29

� global-variable-identifier30

58

� instance-variable-identifier1

� class-variable-identifier2

� primary-expression [indexing-argument-list?]3

� primary-expression (. | ::) (local-variable-identifier | constant-identifier)4

� :: constant-identifier5

NOTE Some existing implementations allow some syntactic constructs such as constant-identifiers in a6

block-parameter. Whether they are allowed is therefore implementation-defined. Future implementations7

should not allow them.8

Whether the grouped-left-hand-side (see 11.4.2.4) of the multiple-left-hand-side of the block-9

parameter-list is allowed to be of the following form is implementation-defined.10

� ((multiple-left-hand-side-item ,)+)11

Semantics12

A block is a procedure which is passed to a method invocation.13

A block can be called either by a yield-expression (see 11.3.5) or by invoking the method call14

on an instance of the class Proc which is created by an invocation of the method new on the15

class Proc to which the block is passed (see 15.2.17.4.3).16

A block can be called with arguments. If a block is called by a yield-expression, the arguments17

to the yield-expression are used as the arguments to the block call. If a block is called by an18

invocation of the method call, the arguments to the method invocation is used as the arguments19

to the block call.20

A block is evaluated within the execution context as it exists just before the method invocation to21

which the block is passed. However, the changes of variable bindings in [local-variable-bindings]22

after the block is passed to the method invocation affect the execution context. Let Eb be the23

possibly affected execution context.24

When a block is called, the block is evaluated as follows:25

a) Let Eo be the current execution context. Let L be the list of arguments passed to the block.26

b) Set the execution context to Eb.27

c) Push an empty set of local variable bindings onto [local-variable-bindings] .28

d) If the block-parameter-list in the do-block or the brace-block is present:29

1) If the block-parameter-list is of the form left-hand-side or grouped-left-hand-side:30

i) If the length of L is 0, let X be nil.31

ii) If the length of L is 1, let X be the only element of L.32

59

iii) If the length of L is larger than 1, the result of this step is unspecified.1

iv) If the block-parameter-list is of the form left-hand-side, evaluate a single-variable-2

assignment-expression (see 11.4.2.2.2) E, where the variable of E is the left-hand-3

side and the value of the operator-expression of E is X.4

v) If the block-parameter-list is of the form grouped-left-hand-side, evaluate a many-5

to-many-assignment-statement (see 11.4.2.4) E, where the multiple-left-hand-side6

of E is the grouped-left-hand-side and the value of the method-invocation-without-7

parentheses or operator-expression of E is X.8

2) If the block-parameter-list is of the form multiple-left-hand-side and the multiple-left-9

hand-side is not a grouped-left-hand-side:10

i) If the length of L is 1:11

I) If the only element of L is not an instance of the class Array, the result of12

this step is unspecified.13

II) Create a list of arguments Y which contains the elements of L, preserving14

their order.15

ii) If the length of L is 0 or larger than 1, let Y be L.16

iii) Evaluate the many-to-many-assignment-statement E as described in 11.4.2.4, where17

the multiple-left-hand-side of E is the block-parameter-list and the list of arguments18

constructed from the multiple-right-hand-side of E is Y.19

e) Evaluate the block-body. If the evaluation of the block-body :20

1) is terminated by a break-expression:21

i) If the method invocation with which block is passed has already terminated when22

the block is called:23

I) Let S be an instance of the class Symbol with name break.24

II) If the jump-argument of the break-expression is present, let V be the value of25

the jump-argument. Otherwise, let V be nil.26

III) Raise a direct instance of the class LocalJumpError which has two instance27

variable bindings, one named @reason with the value S and the other named28

@exit value with the value V.29

ii) Otherwise, restore the execution context to Eo and terminate Step 13.3.3 i) and30

take Step 13.3.3 j) of the current method invocation.31

If the jump-argument of the break-expression is present, the value of the current32

method invocation is the value of the jump-argument. Otherwise, the value of the33

current method invocation is nil.34

2) is terminated by a redo-expression, repeat Step e).35

60

3) is terminated by a next-expression:1

i) If the jump-argument of the next-expression is present, let V be the value of the2

jump-argument.3

ii) Otherwise, let V be nil.4

4) is terminated by a return-expression, remove the element from the top of [local-variable-5

bindings] .6

5) is terminates otherwise, let V be the resulting value of the evaluation of the block-body.7

f) Unless Step e) is terminated by a return-expression, restore the execution context to Eo.8

g) The value of calling the do-block or the brace-block is V.9

11.3.4 The super expression10

Syntax11

super-expression ::=12

super-with-optional-argument13

| super-with-argument14

| super-with-argument-and-do-block15

super-with-optional-argument ::16

super ([no line-terminator here] [no whitespace here] argument-with-parentheses)?17

block ?
18

super-with-argument ::19

super argument-without-parentheses20

super-with-argument-and-do-block ::21

super argument-without-parentheses do-block22

The block-argument of the argument-list of the argument-without-parentheses (see 11.3.2) of a23

super-with-argument-and-do-block shall be omitted.24

Semantics25

A super-expression is evaluated as follows:26

a) If the current self is pushed by a singleton-class-definition (see 13.4.2), or an invocation of27

one of the following methods, the behavior is unspecified:28

� the method class eval of the class Module (see 15.2.2.4.15)29

� the method module eval of the class Module (see 15.2.2.4.35)30

61

� the method instance eval of the class Kernel (see 15.3.1.3.18)1

b) Let A be an empty list. Let B be the top of [block] .2

1) If the super-expression is a super-with-optional-argument, and neither the argument-3

with-parentheses nor the block is present, construct a list of arguments as follows:4

i) Let M be the method which correspond to the current method invocation. Let L5

be the parameter-list of the method-parameter-part of M. Let S be the set of local6

variable bindings in [local-variable-bindings] which corresponds to the current7

method invocation.8

ii) If the mandatory-parameter-list is present in L, for each mandatory-parameter p,9

take the following steps:10

I) Let v be the value of the binding with name p in S.11

II) Append v to A.12

iii) If the optional-parameter-list is present in L, for each optional-parameter p, take13

the following steps:14

I) Let n be the optional-parameter-name of p.15

II) Let v be the value of the binding with name n in S.16

III) Append v to A.17

iv) If the array-parameter is present in L:18

I) Let n be the array-parameter-name of the array-parameter.19

II) Let v be the value of the binding with name n in S. Append each element of20

v, in the indexing order, to A.21

2) If the super-expression is a super-with-optional-argument with either or both of the22

argument-with-parentheses and the block :23

i) If the argument-with-parentheses is present, construct a list of arguments and a24

block as described in 11.3.2. Let A be the resulting list. Let B be the resulting25

block, if any.26

ii) If the block is present, let B be the block.27

3) If the super-expression is a super-with-argument, construct the list of arguments from28

the argument-without-parentheses as described in 11.3.2. Let A be the resulting list. If29

block-argument of the argument-list of argument-without-parentheses is present, let B30

be the block constructed from the block-argument.31

4) If the super-expression is a super-with-argument-and-do-block, construct a list of ar-32

guments from the argument-without-parentheses as described in 11.3.2. Let A be the33

resulting list. Let B be the do-block.34

62

c) Determine the method to be invoked as follows:1

1) Let C be the current class or module. Let N be the top of [defined-method-name] .2

2) If C is an instance of the class Class:3

i) Search for a method binding with name N from Step b) in 13.3.4, assuming that4

C in 13.3.4 to be C.5

ii) If a binding is found and its value is not undef (see 13.1.1), let V be the value of6

the binding.7

iii) Otherwise:8

I) Add a direct instance of the class Symbol with name N to the head of A.9

II) Invoke the method method missing (see 15.3.1.3.30) on the current self with10

A as arguments and B as the block.11

III) Terminate the evaluation of the super-expression. The value of the super-12

expression is the resulting value of the method invocation.13

3) If C is an instance of the class Module and not an instance of the class Class:14

i) Let M be C and let new C be the class of the current self.15

ii) Let Lm be the included module list of C. Search for M in Lm.16

iii) If M is found in Lm:17

I) Search for a method binding with name N in the set of bindings of instance18

methods of each module in Lm. Examine modules in Lm, in reverse order,19

from the module just before M to the first module in Lm.20

II) If a binding is found and its value is not undef, let V be the value of the21

binding.22

III) If a binding is found and its value is undef (see 13.1.1), take the steps from23

c) 2) iii) I) to c) 2) iii) III).24

IV) If a binding is not found and C has a direct superclass, let S be the superclass.25

Take Step c) 2), assuming that C in c) 2) to be S.26

V) If a binding is not found and C does not have a direct superclass, take the27

steps from c) 2) iii) I) to c) 2) iii) III).28

iv) Otherwise, let new C be the direct superclass of C and repeat from Step c) 3) ii).29

If C does not have a direct superclass, the behavior is unspecified.30

d) Take steps g), h), i), and j) of 13.3.3, assuming that A, B, M, R, and V in 13.3.3 to be A, B,31

N, the current self, and V in this subclause respectively. The value of the super-expression32

is the resulting value.33

63

11.3.5 The yield expression1

Syntax2

yield-expression ::=3

yield-with-optional-argument4

| yield-with-argument5

yield-with-optional-argument ::6

yield-with-parentheses-and-argument7

| yield-with-parentheses-without-argument8

| yield9

yield-with-parentheses-and-argument ::10

yield [no line-terminator here] [no whitespace here] (argument-list)11

yield-with-parentheses-without-argument ::12

yield [no line-terminator here] [no whitespace here] ()13

yield-with-argument ::14

yield argument-without-parentheses15

The block-argument of the argument-list (see 11.3.2) of a yield-with-parentheses-and-argument16

shall be omitted.17

The block-argument of the argument-list of the argument-without-parentheses (see 11.3.2) of a18

yield-with-argument shall be omitted.19

Semantics20

A yield-expression is evaluated as follows:21

a) Let B be the top of [block] . If B is block-not-given:22

1) Let S be a direct instance of the class Symbol with name noreason.23

2) Let V be an implementation-defined value.24

3) Raise a direct instance of the class LocalJumpError which has two instance variable25

bindings, one named @reason with the value S and the other named @exit value with26

the value V.27

b) A yield-with-optional-argument is evaluated as follows:28

1) If the yield-with-optional-argument is of the form yield-with-parentheses-and-argument,29

create a list of arguments from the argument-without-parentheses as described in 11.3.2.30

Let L be the list.31

64

2) If the yield-with-optional-argument is of the form yield-with-parentheses-without-argument1

or yield, create an empty list of argument L.2

3) Call B with L as described in 11.3.3.3

4) The value of the yield-with-optional-argument is the value of the block call.4

c) A yield-with-argument is evaluated as follows:5

1) Create a list of arguments from the argument-without-parentheses as described in6

11.3.2. Let L be the list.7

2) Call B with L as described in 11.3.3.8

3) The value of the yield-with-argument is the value of the block call.9

11.4 Operator expressions10

11.4.1 General description11

Syntax12

operator-expression ::13

assignment-expression14

| defined?-without-parentheses15

| conditional-operator-expression16

See 11.4.2 for assignment-expressions.17

NOTE assignment-statement is not an operator-expression but a statement(see 12.1).18

See 11.4.3.2 for defined?-without-parenthesess.19

NOTE defined?-with-parentheses is not an operator-expression but a primary-expression(see 11.5.1).20

See 11.5.2.2.5 for conditional-operator-expressions.21

11.4.2 Assignments22

11.4.2.1 General description23

Syntax24

assignment ::=25

assignment-expression26

| assignment-statement27

assignment-expression ::28

single-assignment-expression29

65

| abbreviated-assignment-expression1

| assignment-with-rescue-modifier2

assignment-statement ::3

single-assignment-statement4

| abbreviated-assignment-statement5

| multiple-assignment-statement6

Semantics7

An assignment creates or updates variable bindings, or invokes a method whose name ends with8

=.9

Evaluations of assignment-expressions and assignment-statements are described in the clauses10

from 11.4.2.2 to 11.4.2.5.11

11.4.2.2 Single assignments12

11.4.2.2.1 General description13

Syntax14

single-assignment ::=15

single-assignment-expression16

| single-assignment-statement17

single-assignment-expression ::18

single-variable-assignment-expression19

| scoped-constant-assignment-expression20

| single-indexing-assignment-expression21

| single-method-assignment-expression22

single-assignment-statement ::23

single-variable-assignment-statement24

| scoped-constant-assignment-statement25

| single-indexing-assignment-statement26

| single-method-assignment-statement27

11.4.2.2.2 Single variable assignments28

Syntax29

single-variable-assignment ::=30

single-variable-assignment-expression31

| single-variable-assignment-statement32

66

single-variable-assignment-expression ::1

variable [no line-terminator here] = operator-expression2

single-variable-assignment-statement ::3

variable [no line-terminator here] = method-invocation-without-parentheses4

Semantics5

A single-variable-assignment is evaluated as follows:6

a) Evaluate the operator-expression or the method-invocation-without-parentheses. Let V be7

the resulting value.8

b) 1) If the variable(see 11.5.4) is a constant-identifier :9

i) Let N be the constant-identifier.10

ii) If a binding with name N exists in the set of bindings of constants of the current11

class or module, replace the value of the binding with V.12

iii) Otherwise, create a variable binding with name N and value V in the set of13

bindings of constants of the current class or module.14

2) If the variable is a global-variable-identifier :15

i) Let N be the global-variable-identifier.16

ii) If a binding with name N exists in [global-variable-bindings] , replace the value of17

the binding with V.18

iii) Otherwise, create a variable binding with name N and value V in [global-variable-19

bindings] .20

3) If the variable is a class-variable-identifier :21

i) Let C be the first class or module in the list at the top of [class-module-list] which22

is not a singleton class.23

Let CS be the set of classes which consists of C and all the superclasses of C. Let24

MS be the set of modules which consists of all the modules in the included module25

lists of all classes in CS. Let CM be the union of CS and MS.26

Let N be the class-variable-identifier.27

ii) If exactly one of the classes or modules in CM has a binding with name N in the28

set of bindings of class variables, let B be that binding.29

If more than one class or module in CM has bindings with name N in the set30

of bindings of class variables, choose a binding B from those bindings in an31

implementation-defined way.32

67

Replace the value of B with V.1

iii) If none of the classes or modules in CM has a binding with name N in the set of2

bindings of class variables, create a variable binding with name N and value V in3

the set of bindings of class variables of C.4

4) If the variable is an instance-variable-identifier :5

i) Let N be the instance-variable-identifier.6

ii) If a binding with name N exists in the set of bindings of instance variables of the7

current self, replace the value of the binding with V.8

iii) Otherwise, create a variable binding with name N and value V in the set of9

bindings of instance variables of the current self.10

5) If the variable is a local-variable-identifier :11

i) Let N be the local-variable-identifier.12

ii) Search for a binding of a local variable with name N as described in 9.2.13

iii) If a binding is found, replace the value of the binding with V.14

iv) Otherwise, create a variable binding with name N and value V in the current set15

of local variable bindings.16

c) The value of the single-variable-assignment is V.17

11.4.2.2.3 Scoped constant assignments18

Syntax19

scoped-constant-assignment ::=20

scoped-constant-assignment-expression21

| scoped-constant-assignment-statement22

scoped-constant-assignment-expression ::23

primary-expression [no line-terminator here] [no whitespace here] :: constant-24

identifier25

[no line-terminator here] = operator-expression26

| :: constant-identifier [no line-terminator here] = operator-expression27

scoped-constant-assignment-statement ::28

primary-expression [no line-terminator here] [no whitespace here] :: constant-29

identifier30

[no line-terminator here] = method-invocation-without-parentheses31

| :: constant-identifier [no line-terminator here] = method-invocation-without-parentheses32

68

Semantics1

A scoped-constant-assignment is evaluated as follows:2

a) If the primary-expression is present, evaluate it and let M be the resulting value. Otherwise,3

let M be the class Object.4

b) If M is an instance of the class Module:5

1) Let N be the constant-identifier.6

2) Evaluate the operator-expression or the method-invocation-without-parentheses. Let V7

be the resulting value.8

3) If a binding with name N exists in the set of bindings of constants of M, replace the9

value of the binding with V.10

4) Otherwise, create a variable binding with name N and value V in the set of bindings11

of constants of M.12

5) The value of the scoped-constant-assignment is V.13

c) If M is not an instance of the class Module, raise a direct instance of the class TypeError.14

11.4.2.2.4 Single indexing assignments15

Syntax16

single-indexing-assignment ::=17

single-indexing-assignment-expression18

| single-indexing-assignment-statement19

single-indexing-assignment-expression ::20

primary-expression [no line-terminator here] [no whitespace here] [indexing-21

argument-list ?]22

[no line-terminator here] = operator-expression23

single-indexing-assignment-statement ::24

primary-expression [no line-terminator here] [no whitespace here] [indexing-25

argument-list ?]26

[no line-terminator here] = method-invocation-without-parentheses27

Semantics28

A single-indexing-assignment is evaluated as follows:29

a) Evaluate the primary-expression. Let O be the resulting value.30

b) Construct a list of arguments from the indexing-argument-list as described in 11.3.2. Let L31

be the resulting list.32

69

c) Evaluate the operator-expression or method-invocation-without-parentheses. Let V be the1

resulting value.2

d) Append V to L.3

e) Invoke the method []= on O with L as the list of arguments.4

f) The value of the single-indexing-assignment is V.5

11.4.2.2.5 Single method assignments6

Syntax7

single-method-assignment ::=8

single-method-assignment-expression9

| single-method-assignment-statement10

single-method-assignment-expression ::11

primary-expression [no line-terminator here] (. | ::) local-variable-identifier12

[no line-terminator here] = operator-expression13

| primary-expression [no line-terminator here] . constant-identifier14

[no line-terminator here] = operator-expression15

single-method-assignment-statement ::16

primary-expression [no line-terminator here] (. | ::) local-variable-identifier17

[no line-terminator here] = method-invocation-without-parentheses18

| primary-expression [no line-terminator here] . constant-identifier19

[no line-terminator here] = method-invocation-without-parentheses20

Semantics21

A single-method-assignment is evaluated as follows:22

a) Evaluate the primary-expression. Let O be the resulting value.23

b) Evaluate the operator-expression or method-invocation-without-parentheses. Let V be the24

resulting value.25

c) Let M be the local-variable-identifier or constant-identifier. Let N be the concatenation of26

M and =.27

d) Invoke the method whose name is N on O with a list of arguments which contains only one28

value V.29

e) The value of the single-method-assignment is V.30

70

11.4.2.3 Abbreviated assignments1

11.4.2.3.1 General description2

Syntax3

abbreviated-assignment ::=4

abbreviated-assignment-expression5

| abbreviated-assignment-statement6

abbreviated-assignment-expression ::7

abbreviated-variable-assignment-expression8

| abbreviated-indexing-assignment-expression9

| abbreviated-method-assignment-expression10

abbreviated-assignment-statement ::11

abbreviated-variable-assignment-statement12

| abbreviated-indexing-assignment-statement13

| abbreviated-method-assignment-statement14

11.4.2.3.2 Abbreviated variable assignments15

Syntax16

abbreviated-variable-assignment ::=17

abbreviated-variable-assignment-expression18

| abbreviated-variable-assignment-statement19

abbreviated-variable-assignment-expression ::20

variable [no line-terminator here] assignment-operator operator-expression21

abbreviated-variable-assignment-statement ::22

variable [no line-terminator here] assignment-operator23

method-invocation-without-parentheses24

Semantics25

An abbreviated-variable-assignment is evaluated as follows:26

a) Evaluate the variable as a variable reference (see 11.5.4). Let V be the resulting value.27

b) Evaluate the operator-expression or the method-invocation-without-parentheses. Let W be28

the resulting value.29

c) Let OP be the assignment-operator-name of the assignment-operator.30

71

d) Let X be the operator-expression of the form V OP W.1

e) Let I be the variable of the abbreviated-variable-assignment-expression or the abbreviated-2

variable-assignment-statement.3

f) Evaluate a single-variable-assignment-expression (see 11.4.2.2.2) where its variable is I and4

the operator-expression is X.5

g) The value of the abbreviated-variable-assignment is the resulting value of the evaluation.6

11.4.2.3.3 Abbreviated indexing assignments7

Syntax8

abbreviated-indexing-assignment ::=9

abbreviated-indexing-assignment-expression10

| abbreviated-indexing-assignment-statement11

abbreviated-indexing-assignment-expression ::12

primary-expression [no line-terminator here] [no whitespace here] [indexing-13

argument-list ?]14

[no line-terminator here] assignment-operator operator-expression15

abbreviated-indexing-assignment-statement ::16

primary-expression [no line-terminator here] [no whitespace here] [indexing-17

argument-list ?]18

[no line-terminator here] assignment-operator method-invocation-without-parentheses19

Semantics20

An abbreviated-indexing-assignment is evaluated as follows:21

a) Evaluate the primary-expression. Let O be the resulting value.22

b) Construct a list of arguments from the indexing-argument-list as described in 11.3.2. Let L23

be the resulting list.24

c) Invoke the method [] on O with L as the list of arguments. Let V be the resulting value.25

d) Evaluate the operator-expression or method-invocation-without-parentheses. Let W be the26

resulting value.27

e) Let OP be the assignment-operator-name of the assignment-operator.28

f) Evaluate the operator-expression of the form V OP W. Let X be the resulting value.29

g) Append X to L.30

h) Invoke the method []= on O with L as the list of arguments.31

72

i) The value of the abbreviated-indexing-assignment is X.1

11.4.2.3.4 Abbreviated method assignments2

Syntax3

abbreviated-method-assignment ::=4

abbreviated-method-assignment-expression5

| abbreviated-method-assignment-statement6

abbreviated-method-assignment-expression ::7

primary-expression [no line-terminator here] (. | ::) local-variable-identifier8

[no line-terminator here] assignment-operator operator-expression9

| primary-expression [no line-terminator here] . constant-identifier10

[no line-terminator here] assignment-operator operator-expression11

abbreviated-method-assignment-statement ::12

primary-expression [no line-terminator here] (. | ::) local-variable-identifier13

[no line-terminator here] assignment-operator method-invocation-without-parentheses14

| primary-expression [no line-terminator here] . constant-identifier15

[no line-terminator here] assignment-operator method-invocation-without-parentheses16

Semantics17

An abbreviated-method-assignment is evaluated as follows:18

a) Evaluate the primary-expression. Let O be the resulting value.19

b) Create an empty list of arguments L. Invoke the method whose name is the local-variable-20

identifier or the constant-identifier on O with L as the list of arguments. Let V be the21

resulting value.22

c) Evaluate the operator-expression or method-invocation-without-parentheses. Let W be the23

resulting value.24

d) Let OP be the assignment-operator-name of the assignment-operator.25

e) Evaluate the operator-expression of the form V OP W. Let X be the resulting value.26

f) Let M be the local-variable-identifier or the constant-identifier. Let N be the concatenation27

of M and =.28

g) Invoke the method whose name is N on O with a list of arguments which contains only one29

value X.30

h) The value of the abbreviated-method-assignment is X.31

11.4.2.4 Multiple assignments32

Syntax33

73

multiple-assignment-statement ::1

many-to-one-assignment-statement2

| one-to-packing-assignment-statement3

| many-to-many-assignment-statement4

many-to-one-assignment-statement ::5

left-hand-side [no line-terminator here] = multiple-right-hand-side6

one-to-packing-assignment-statement ::7

packing-left-hand-side [no line-terminator here] =8

(method-invocation-without-parentheses | operator-expression)9

many-to-many-assignment-statement ::10

multiple-left-hand-side [no line-terminator here] = multiple-right-hand-side11

| (multiple-left-hand-side but not packing-left-hand-side)12

[no line-terminator here] =13

(method-invocation-without-parentheses | operator-expression)14

left-hand-side ::15

variable16

| primary-expression [no line-terminator here] [no whitespace here] [indexing-17

argument-list ?]18

| primary-expression [no line-terminator here]19

(. | ::) (local-variable-identifier | constant-identifier)20

| :: constant-identifier21

multiple-left-hand-side ::22

(multiple-left-hand-side-item [no line-terminator here] ,)+ multiple-left-hand-23

side-item ?
24

| (multiple-left-hand-side-item [no line-terminator here] ,)+ packing-left-hand-side ?
25

| packing-left-hand-side26

| grouped-left-hand-side27

packing-left-hand-side ::28

* left-hand-side ?
29

grouped-left-hand-side ::30

(multiple-left-hand-side)31

multiple-left-hand-side-item ::32

left-hand-side33

| grouped-left-hand-side34

multiple-right-hand-side ::35

operator-expression-list ([no line-terminator here] , splatting-right-hand-side)?36

74

| splatting-right-hand-side1

splatting-right-hand-side ::2

splatting-argument3

Semantics4

A multiple-assignment-statement is evaluated as follows:5

a) A many-to-one-assignment-statement is evaluated as follows:6

1) Construct a list of values L from the multiple-right-hand-side as described below.7

i) If the operator-expression-list is present, evaluate its operator-expressions in the8

order they appear in the program text. Let L1 be a list which contains the resulting9

values, preserving their order.10

ii) If the operator-expression-list is omitted, create an empty list of values L1.11

iii) If the splatting-right-hand-side is present, construct a list of values from its splatting-12

argument as described in 11.3.2 and let L2 be the resulting list.13

iv) If the splatting-right-hand-side is omitted, create an empty list of values L2.14

v) The result is the concatenation of L1 and L2.15

2) If the length of L is 0 or 1, let A be an implementation-defined value.16

3) If the length of L is larger than 1, create a direct instance of the class Array and store17

the elements of L in it, preserving their order. Let A be the instance of the class Array.18

4) Evaluate a single-variable-assignment-expression (see 11.4.2.2.2) where its variable is19

the left-hand-side and the value of its operator-expression is A.20

5) The value of the many-to-one-assignment-statement is A.21

b) A one-to-packing-assignment-statement is evaluated as follows:22

1) Evaluate the method-invocation-without-parentheses or the operator-expression. Let V23

be the resulting value.24

2) If V is an instance of the class Array, let A be a a new direct instance of the class25

Array which contains only one element V itself, or all the elements of V in the same26

order in V. Which is chosen is implementation-defined.27

3) If V is not an instance of the class Array, create a direct instance A of the class Array28

which contains only one value V.29

4) If the left-hand-side of the packing-left-hand-side is present, evaluate a single-variable-30

assignment-expression (see 11.4.2.2.2) where its variable is the left-hand-side and the31

value of the operator-expression is A. Otherwise, skip this step.32

75

5) The value of the one-to-packing-assignment-statement is A.1

c) A many-to-many-assignment-statement is evaluated as follows:2

1) If the multiple-right-hand-side is present, construct a list of values from it [see a) 1)]3

and let R be the resulting list.4

2) If the multiple-right-hand-side is omitted:5

i) Evaluate the method-invocation-without-parentheses or the operator-expression.6

Let V be the resulting value.7

ii) If V is not an instance of the class Array, the behavior is unspecified.8

iii) Create a list of arguments R which contains all the elements of V, preserving their9

order.10

3) i) Create an empty list of variables L.11

ii) For each multiple-left-hand-side-item, in the order they appear in the program12

text, append the left-hand-side or the grouped-left-hand-side of the multiple-left-13

hand-side-item to L.14

iii) If the packing-left-hand-side of the multiple-left-hand-side is present, append it to15

L.16

iv) If the multiple-left-hand-side is a grouped-left-hand-side, append the grouped-left-17

hand-side to L.18

4) For each element Li of L, in the same order in L, take the following steps:19

i) Let i be the index of Li within L. Let NR be the number of elements of R.20

ii) If Li is a left-hand-side:21

I) If i is larger than NR, let V be nil.22

II) Otherwise, let V be the ith element of R.23

III) Evaluate the single-variable-assignment of the form Li = V.24

iii) If Li is a packing-left-hand-side and its left-hand-side is present:25

I) If i is larger than NR, create an empty direct instance of the class Array. Let26

A be the instance.27

II) Otherwise, create a direct instance of the class Array which contains elements28

in R whose index is equal to, or larger than i, in the same order they are stored29

in R. Let A be the instance.30

III) Evaluate a single-variable-assignment-expression (see 11.4.2.2.2) where its31

variable is the left-hand-side and the value of the operator-expression is A.32

76

iv) If Li is a grouped-left-hand-side:1

I) If i is larger than NR, let V be nil.2

II) Otherwise, let V be the ith element of R.3

III) Evaluate a many-to-many-assignment-statement where its multiple-left-hand-4

side is the multiple-left-hand-side of the grouped-left-hand-side and its multiple-5

right-hand-side is V.6

11.4.2.5 Assignments with rescue modifiers7

Syntax8

assignment-with-rescue-modifier ::9

left-hand-side [no line-terminator here] =10

operator-expression 1 [no line-terminator here] rescue operator-expression 211

Semantics12

An assignment-with-rescue-modifier is evaluated as follows:13

a) Evaluate the operator-expression1. Let V be the resulting value.14

b) If an exception is raised and not handled during the evaluation of the operator-expression1,15

and if the exception is an instance of the class StandardError, evaluate the operator-16

expression2 and replace V with the resulting value.17

c) Evaluate a single-variable-assignment-expression (see 11.4.2.2.2) where its variable is the18

left-hand-side and the value of the operator-expression is V. The value of the assignment-19

with-rescue-modifier is the resulting value of the evaluation.20

11.4.3 Unary operator expressions21

11.4.3.1 General description22

Syntax23

unary-operator-expression ::=24

unary-minus-expression25

| unary-expression26

unary-minus-expression ::27

power-expression28

| - power-expression29

unary-expression ::30

primary-expression31

77

| ~ unary-expression 11

| + unary-expression 22

| ! unary-expression 33

Semantics4

A unary-operator-expression is evaluated as follows:5

a) A unary-minus-expression of the form power-expression is evaluated as described in 11.4.46

e).7

b) A unary-minus-expression of the form - power-expression is evaluated as follows:8

1) Evaluate the power-expression. Let X be the resulting value.9

2) Create an empty list of arguments L. Invoke the method -@ on X with L as the list of10

arguments. The value of the unary-expression is the resulting value of the invocation.11

c) A unary-expression of the form ~ unary-expression1 is evaluated as follows:12

1) Evaluate the unary-expression1. Let X be the resulting value.13

2) Create an empty list of arguments L. Invoke the method ~ on X with L as the list of14

arguments. The value of the unary-expression is the resulting value of the invocation.15

d) A unary-expression of the form + unary-expression2 is evaluated as follows:16

1) Evaluate the unary-expression2. Let X be the resulting value.17

2) Create an empty list of arguments L. Invoke the method +@ on X with L as the list of18

arguments. The value of the unary-expression2 is the resulting value of the invocation.19

e) A unary-expression of the form ! unary-expression3 is evaluated as described in 11.2.20

11.4.3.2 The defined? expression21

Syntax22

defined?-expression ::=23

defined?-with-parentheses24

| defined?-without-parentheses25

defined?-with-parentheses ::26

defined? (expression)27

defined?-without-parentheses ::28

defined? operator-expression29

78

Semantics1

A defined?-expression is evaluated as follows:2

a) Let E be the expression of the defined?-with-parentheses or the operator-expression of the3

defined?-without-parentheses.4

b) If E is a constant-identifier :5

1) Search for a binding of a constant with name E with the same evaluation steps for6

constant-identifier as described in 11.5.4.2. However, a direct instance of the class7

NameError shall not be raised when a binding is not found.8

2) If a binding is found, the value of the defined?-expression is an implementation-defined9

value, which shall be a trueish object.10

3) Otherwise, the value of the defined?-expression is nil.11

c) If E is a global-variable-identifier :12

1) If a binding with name E exists in [global-variable-bindings] , the value of the defined?-13

expression is an implementation-defined value, which shall be a trueish object.14

2) Otherwise, the value of the defined?-expression is nil.15

d) If E is a class-variable-identifier :16

1) Let C be the current class or module. Let CS be the set of classes which consists of C17

and all the superclasses of C. Let MS be the set of modules which consists of all the18

modules in the included module lists of all classes in CS. Let CM be the union of CS19

and MS.20

2) If any of the classes or modules in CM has a binding with name E in the set of bindings21

of class variables, the value of the defined?-expression is an implementation-defined22

value, which shall be a trueish object.23

3) Otherwise, the value of the defined?-expression is nil.24

e) If E is an instance-variable-identifier :25

1) If a binding with name E exists in the set of bindings of instance variables of the26

current self, the value of the defined?-expression is an implementation-defined value,27

which shall be a trueish object.28

2) Otherwise, the value of the defined?-expression is nil.29

f) If E is a local-variable-identifier :30

1) If the local-variable-identifier is a reference to a local variable (see 11.5.4.7.2), the value31

of the defined?-expression is an implementation-defined value, which shall be a trueish32

object.33

79

2) Otherwise, search for a method binding with name E, starting from the current class1

or module as described in 13.3.4.2

i) If the binding is found and its value is not undef, the value of the defined?-3

expression is an implementation-defined value, which shall be a trueish object.4

ii) Otherwise, the value of the defined?-expression is nil.5

g) Otherwise, the value of the defined?-expression is implementation-defined.6

11.4.4 Binary operator expressions7

Syntax8

binary-operator-expression ::=9

equality-expression10

equality-expression ::11

relational-expression12

| relational-expression [no line-terminator here] <=> relational-expression13

| relational-expression [no line-terminator here] == relational-expression14

| relational-expression [no line-terminator here] === relational-expression15

| relational-expression [no line-terminator here] != relational-expression16

| relational-expression [no line-terminator here] =~ relational-expression17

| relational-expression [no line-terminator here] !~ relational-expression18

relational-expression ::19

bitwise-OR-expression20

| relational-expression [no line-terminator here] > bitwise-OR-expression21

| relational-expression [no line-terminator here] >= bitwise-OR-expression22

| relational-expression [no line-terminator here] < bitwise-OR-expression23

| relational-expression [no line-terminator here] <= bitwise-OR-expression24

bitwise-OR-expression ::25

bitwise-AND-expression26

| bitwise-OR-expression [no line-terminator here] | bitwise-AND-expression27

| bitwise-OR-expression [no line-terminator here] ^ bitwise-AND-expression28

bitwise-AND-expression ::29

bitwise-shift-expression30

| bitwise-AND-expression [no line-terminator here] & bitwise-shift-expression31

bitwise-shift-expression ::32

additive-expression33

| bitwise-shift-expression [no line-terminator here] << additive-expression34

| bitwise-shift-expression [no line-terminator here] >> additive-expression35

80

additive-expression ::1

multiplicative-expression2

| additive-expression [no line-terminator here] + multiplicative-expression3

| additive-expression [no line-terminator here] - multiplicative-expression4

multiplicative-expression ::5

unary-minus-expression6

| multiplicative-expression [no line-terminator here] * unary-minus-expression7

| multiplicative-expression [no line-terminator here] / unary-minus-expression8

| multiplicative-expression [no line-terminator here] % unary-minus-expression9

power-expression ::10

unary-expression11

| unary-expression [no line-terminator here] ** power-expression12

binary-operator ::=13

<=> | == | != | === | =~ | !~ | > | >= | < | <=14

| | | ^ | & | << | >> | + | - | * | / | % | **15

If there is a whitespace character just before any of the following operators, there shall be one16

or more whitespace characters just after the operator.17

� & of a bitwise-AND-expression18

� << of a bitwise-shift-expression19

� + of a additive-expression20

� - of a additive-expression21

� * of a multiplicative-expression22

� / of a multiplicative-expression23

� % of a multiplicative-expression24

NOTE This constraint is necessary to distinguish binary operators from leading sequences of characters25

of argument-without-parentheseses (see 11.3.2).26

Semantics27

An equality-expression is evaluated as follows:28

a) If the equality-expression is of the form x != y, take the following steps:29

1) Evaluate x. Let X be the resulting value.30

2) Evaluate y. Let Y be the resulting value.31

81

3) Invoke the method == on X with Y as an argument. If the resulting value is a trueish1

object, the value of the equality-expression is false. Otherwise, the value of the equality-2

expression is true.3

b) The steps in Step f) may be taken instead of Step a).4

In this case, the following conditions shall be satisfied:5

� The operator != is included in operator-method-name.6

� An instance method != is defined in the class Object, one of its superclasses, or a7

module included in the class Object. The method != shall take one argument and8

shall return the value of the equality-expression in Step a) 3), where let X and Y be9

the receiver and the argument, respectively.10

c) If the equality-expression is of the form x !~ y, take the following steps:11

1) Evaluate x. Let X be the resulting value.12

2) Evaluate y. Let Y be the resulting value.13

3) Invoke the method =~ on X with Y as an argument. If the resulting value is a trueish14

object, the value of the equality-expression is false. Otherwise, the value of the equality-15

expression is true.16

d) The steps in Step f) may be taken instead of Step c). In this case, the following conditions17

shall be satisfied:18

� The operator !~ is included in operator-method-name.19

� An instance method !~ is defined in the class Object, one of its superclasses, or a20

module included in the class Object. The method !~ shall take one argument and21

shall return the value of the equality-expression in Step c) 3), where let X and Y be22

the receiver and the argument, respectively.23

e) If the equality-expression is an unary-minus-expression and not a power-expression, evalu-24

ate it as described in 11.4.3. If the equality-expression is an unary-minus-expression and25

a power-expression, evaluate the power-expression by taking the following steps and the26

resulting value is the value of the equality-expression.27

1) If the power-expression is a unary-expression, evaluate it as described in 11.4.3 and the28

resulting value is the value of the power-expression.29

2) If the power-expression is a power-expression of the form unary-expression ** power-30

expression:31

i) If the unary-expression is of the form - unsigned-number :32

I) Evaluate the unsigned-number and let X be the resulting value.33

II) Evaluate the power-expression2 and let Y be the resulting value.34

82

III) Invoke the method whose name is “**” on X with Y as an argument. Let Z1

be the resulting value.2

IV) Invoke the method whose name is “-@” on Z with no arguments. The value3

of the equality-expression is the resulting value of the invocation.4

ii) Otherwise:5

I) Evaluate the unary-expression and let X be the resulting value.6

II) Evaluate the power-expression and let Y be the resulting value.7

III) Invoke the method whose name is “**” on X with Y as an argument. The8

value of the power-expression is the resulting value.9

f) Otherwise, for the equality-expression of the form x binary-operator y, take the following10

steps:11

1) Evaluate x. Let X be the resulting value.12

2) Evaluate y. Let Y be the resulting value.13

3) Invoke the method whose name is the binary-operator on X with Y as an argument.14

The value of the equality-expression is the resulting value of the invocation.15

11.5 Primary expressions16

11.5.1 General description17

Syntax18

primary-expression ::19

class-definition20

| singleton-class-definition21

| module-definition22

| method-definition23

| singleton-method-definition24

| yield-with-optional-argument25

| if-expression26

| unless-expression27

| case-expression28

| while-expression29

| until-expression30

| for-expression31

| return-without-argument32

| break-without-argument33

| next-without-argument34

| redo-expression35

| retry-expression36

| begin-expression37

| grouping-expression38

83

| variable-reference1

| scoped-constant-reference2

| array-constructor3

| hash-constructor4

| literal5

| defined?-with-parentheses6

| primary-method-invocation7

Semantics8

See 13.2.2 for class-definitions.9

See 13.4.2 for singleton-class-definitions.10

See 13.1.2 for module-definitions.11

See 13.3.1 for method-definitions.12

See 13.4.3 for singleton-method-definitions.13

See 11.3.5 for yield-with-optional-arguments.14

See 8.7.6 for literals.15

See 11.4.3.2 for defined?-with-parenthesess.16

See 11.3 for primary-method-invocations.17

11.5.2 Control structures18

11.5.2.1 General description19

Syntax20

control-structure ::=21

conditional-expression22

| iteration-expression23

| jump-expression24

| begin-expression25

26

11.5.2.2 Conditional expressions27

11.5.2.2.1 General description28

Syntax29

conditional-expression ::=30

if-expression31

84

| unless-expression1

| case-expression2

| conditional-operator-expression3

4

11.5.2.2.2 The if expression5

Syntax6

if-expression ::7

if expression then-clause elsif-clause ∗ else-clause ? end8

then-clause ::9

separator compound-statement10

| separator ? then compound-statement11

else-clause ::12

else compound-statement13

elsif-clause ::14

elsif expression then-clause15

Semantics16

The if-expression is evaluated as follows:17

a) Evaluate expression. Let V be the resulting value.18

b) If V is a trueish object, evaluate the compound-statement of the then-clause. The value of19

the if-expression is the resulting value. In this case, elsif-clauses and the else-clause, if any,20

are not evaluated.21

c) If V is a falseish object, and if there is no elsif-clause and no else-clause, then the value of22

the if-expression is nil.23

d) If V is a falseish object, and if there is no elsif-clause but there is an else-clause, then24

evaluate the compound-statement of the else-clause. The value of the if-expression is the25

resulting value.26

e) If V is a falseish object, and if there are one or more elsif-clauses, evaluate the sequence of27

elsif-clauses as follows:28

1) Evaluate the expression of each elsif-clause in the order they appear in the program29

text, until there is an elsif-clause for which expression evaluates to a trueish object.30

Let T be this elsif-clause.31

85

2) If T exists, evaluate the compound-statement of its then-clause. The value of the if-1

expression is the resulting value. Other elsif-clauses and an else-clause following T, if2

any, are not evaluated.3

3) If T does not exist, and if there is an else-clause, then evaluate the compound-statement4

of the else-clause. The value of the if-expression is the resulting value.5

4) If T does not exist, and if there is no else-clause, then the value of the if-expression is6

nil.7

11.5.2.2.3 The unless expression8

Syntax9

unless-expression ::10

unless expression then-clause else-clause ? end11

Semantics12

The unless-expression is evaluated as follows:13

a) Evaluate the expression. Let V be the resulting value.14

b) If V is a falseish object, evaluate the compound-statement of the then-clause. The value15

of the unless-expression is the resulting value. In this case, the else-clause, if any, is not16

evaluated.17

c) If V is a trueish object, and if there is no else-clause, then the value of the unless-expression18

is nil.19

d) If V is a trueish object, and if there is an else-clause, then evaluate the compound-statement20

of the else-clause. The value of the unless-expression is the resulting value.21

11.5.2.2.4 The case expression22

Syntax23

case-expression ::24

case-expression-with-expression25

| case-expression-without-expression26

case-expression-with-expression ::27

case expression separator-list ? when-clause + else-clause ? end28

case-expression-without-expression ::29

case separator-list ? when-clause + else-clause ? end30

86

when-clause ::1

when when-argument then-clause2

when-argument ::3

operator-expression-list ([no line-terminator here] , splatting-argument)?4

| splatting-argument5

Semantics6

A case-expression is evaluated as follows:7

a) If the case-expression is a case-expression-with-expression, evaluate the expression. Let V8

be the resulting value.9

b) The meaning of the phrase “O is matching” in Step c) is defined as follows:10

1) If the case-expression is a case-expression-with-expression, invoke the method === on11

O with a list of arguments which contains only one value V. O is matching if and only12

if the resulting value is a trueish object.13

2) If the case-expression is a case-expression-without-expression, O is matching if and only14

if O is a trueish object.15

c) Take the following steps:16

1) Search the when-clauses in the order they appear in the program text for a matching17

when-clause as follows:18

i) If the operator-expression-list of the when-argument is present:19

I) For each of its operator-expressions, evaluate it and test if the resulting value20

is matching.21

II) If a matching value is found, other operator-expressions, if any, are not eval-22

uated.23

ii) If no matching value is found, and the splatting-argument(see 11.3.2) is present:24

I) Construct a list of values from it as described in 11.3.2. For each element of25

the resulting list, in the same order in the list, test if it is matching.26

II) If a matching value is found, other values, if any, are not evaluated.27

iii) A when-clause is considered to be matching if and only if a matching value is found28

in its when-argument. Later when-clauses, if any, are not tested in this case.29

2) If one of the when-clauses is matching, evaluate the compound-statement of the then-30

clause of this when-clause. The value of the case-expression is the resulting value.31

87

3) If none of the when-clauses is matching, and if there is an else-clause, then evaluate1

the compound-statement of the else-clause. The value of the case-expression is the2

resulting value.3

4) Otherwise, the value of the case-expression is nil.4

11.5.2.2.5 Conditional operator expression5

Syntax6

conditional-operator-expression ::7

range-constructor8

| range-constructor [no line-terminator here] ? operator-expression 1 [no line-9

terminator here] : operator-expression 210

Semantics11

A conditional-operator-expression of the form range-constructor ? operator-expression1 : operator-12

expression2 is evaluated as follows:13

a) Evaluate the range-constructor.14

b) If the resulting value is a trueish object, evaluate the operator-expression1. The value of15

the conditional-operator-expression is the resulting value of the evaluation.16

c) Otherwise, evaluate the operator-expression2. The value of the conditional-operator-expression17

is the resulting value of the evaluation.18

11.5.2.3 Iteration expressions19

11.5.2.3.1 General description20

Syntax21

iteration-expression ::=22

while-expression23

| until-expression24

| for-expression25

| while-modifier-statement26

| until-modifier-statement27

Each iteration-expression has a condition expression and a body .28

The condition expression of an iteration-expression is the iteration-expression’s part evaluated to29

determine the condition of the iteration of the iteration-expression. The condition expression of a30

while-expression (see 11.5.2.3.2), until-expression (see 11.5.2.3.3), for-expression (see 11.5.2.3.4),31

while-modifier-statement (see 12.5) or until-modifier-statement (see 12.6) is its expression.32

88

The body of an iteration-expression is the iteration-expression’s part evaluated iteratively. The1

body of a while-expression, until-expression, or for-expression is its compound-statement. The2

body of a while-modifier-statement or until-modifier-statement is its statement.3

See 12.5 for while-modifier-statements.4

See 12.6 for until-modifier-statements.5

11.5.2.3.2 The while expression6

Syntax7

while-expression ::8

while expression do-clause end9

do-clause ::10

separator compound-statement11

| [no line-terminator here] do compound-statement12

Semantics13

A while-expression is evaluated as follows:14

a) Evaluate the expression, and take the following steps:15

1) If the evaluation of the expression is terminated by a break-expression (see 11.5.2.4.3),16

terminate the evaluation of the while-expression.17

If the jump-argument of the break-expression is present, the value of the while-expression18

is the value of the jump-argument. Otherwise, the value of the while-expression is nil.19

2) If the evaluation of the expression is terminated by a next-expression (see 11.5.2.4.4)20

or redo-expression (see 11.5.2.4.5), continue processing from the beginning of Step a).21

3) Otherwise, let V be the resulting value of the expression.22

b) If V is a falseish object, terminate the evaluation of the while-expression. The value of the23

while-expression is nil.24

c) If V is a trueish object, evaluate the compound-statement of the do-clause, and take the25

following steps:26

1) If the evaluation of the compound-statement is terminated by a break-expression, ter-27

minate the evaluation of the while-expression.28

If the jump-argument of the break-expression is present, the value of the while-expression29

is the value of the jump-argument. Otherwise, the value of the while-expression is nil.30

2) If the evaluation of the compound-statement is terminated by a next-expression, con-31

tinue processing from Step a).32

89

3) If the evaluation of the compound-statement is terminated by a redo-expression, con-1

tinue processing from Step c).2

4) Otherwise, continue processing from Step a).3

11.5.2.3.3 The until expression4

Syntax5

until-expression ::6

until expression do-clause end7

Semantics8

An until-expression is evaluated as follows:9

a) Evaluate the expression, and take the following steps:10

1) If the evaluation of the expression is terminated by a break-expression (see 11.5.2.4.3),11

terminate the evaluation of the until-expression.12

If the jump-argument of the break-expression is present, the value of the until-expression13

is the value of the jump-argument. Otherwise, the value of the until-expression is nil.14

2) If the evaluation of the expression is terminated by a next-expression (see 11.5.2.4.4)15

or redo-expression (see 11.5.2.4.5), continue processing from the beginning of Step a).16

3) Otherwise, let V be the resulting value of the expression.17

b) If V is a trueish object, terminate the evaluation of the until-expression. The value of the18

until-expression is nil.19

c) If V is a falseish object, evaluate the compound-statement of the do-clause, and take the20

following steps:21

1) If the evaluation of the compound-statement is terminated by a break-expression, ter-22

minate the evaluation of the until-expression.23

If the jump-argument of the break-expression is present, the value of the until-expression24

is the value of the jump-argument. Otherwise, the value of the until-expression is nil.25

2) If the evaluation of the compound-statement is terminated by a next-expression, con-26

tinue processing from Step a).27

3) If the evaluation of the compound-statement is terminated by a redo-expression, con-28

tinue processing from Step c).29

4) Otherwise, continue processing from Step a).30

90

11.5.2.3.4 The for expression1

Syntax2

for-expression ::3

for for-variable [no line-terminator here] in expression do-clause end4

for-variable ::5

left-hand-side6

| multiple-left-hand-side7

Semantics8

A for-expression is evaluated as follows:9

a) Evaluate the expression. If the evaluation of the expression is terminated by a break-10

expression, next-expression, or redo-expression, the behavior is unspecified. Otherwise, let11

O be the resulting value.12

b) Let E be the primary-method-invocation of the form primary-expression [no line-terminator13

here] . each do | block-parameter-list | block-body end, where the value of the primary-14

expression is O, the block-parameter-list is the for-variable, the block-body is the compound-15

statement of the do-clause.16

Evaluate E ; however, if a block whose block-body is the compound-statement of the do-clause17

of the for-expression is called during this evaluation, the steps in 11.3.3 except the Step c)18

and the Step e) 4) shall be taken for the evaluation of this call.19

c) The value of the for-expression is the resulting value of the evaluation.20

11.5.2.4 Jump expressions21

11.5.2.4.1 General description22

Syntax23

jump-expression ::=24

return-expression25

| break-expression26

| next-expression27

| redo-expression28

| retry-expression29

Semantics30

jump-expressions are used to terminate the evaluation of a method-body, a block-body, the body31

of an iteration-expression, or the compound-statement2 of a rescue-clause. The evaluation of the32

91

program construct terminated by a jump-expression and the evaluations of program constructs1

in the program construct which are under evaluation when the evaluation of the jump-expression2

has been started are terminated in the middle of the evaluation steps, and have no resulting3

values.4

In this document, the current block or the current iteration-expression refers to the fol-5

lowing:6

a) If the current method invocation does not exist, the block or iteration-expression whose7

evaluation has been started most recently among blocks and iteration-expressions which8

are under evaluation.9

b) If the current method invocation exists, the block or iteration-expression whose evaluation10

has been started most recently among blocks and iteration-expressions which are under11

evaluation and whose evaluation has been started during the evaluation of the current12

method invocation.13

In the both cases, the current block or the current iteration-expression does not exist if such a14

block or iteration-expression does not exist.15

11.5.2.4.2 The return expression16

Syntax17

return-expression ::=18

return-without-argument19

| return-with-argument20

return-without-argument ::21

return22

return-with-argument ::23

return jump-argument24

jump-argument ::25

[no line-terminator here] argument-list26

The block-argument of the argument-list (see 11.3.2) of a jump-argument shall be omitted.27

Semantics28

return-expressions and jump-arguments are evaluated as follows:29

a) A return-expression is evaluated as follows:30

1) Let M be the method-body which corresponds to the current method invocation. If31

such an invocation does not exist, or has already terminated:32

i) Let S be a direct instance of the class Symbol with name return.33

92

ii) If the jump-argument of the return-expression is present, let V be the value of the1

jump-argument. Otherwise, let V be nil.2

iii) Raise a direct instance of the class LocalJumpError which has two instance vari-3

able bindings, one named @reason with the value S and the other named @exit value4

with the value V.5

2) Evaluate the jump-argument, if any, as described in Step b).6

3) If there are block-bodys which include the return-expression and are included in M,7

terminate the evaluations of such block-bodys, from innermost to outermost (see 11.3.3).8

4) Terminate the evaluation of M (see 13.3.3).9

b) A jump-argument is evaluated as follows:10

1) If the jump-argument is a splatting-argument :11

i) Construct a list of values from the splatting-argument as described in 11.3.2 and12

let L be the resulting list.13

ii) If the length of L is 0 or 1, the value of the jump-argument is an implementation-14

defined value.15

iii) If the length of L is larger than 1, create a direct instance of the class Array16

and store the elements of L in it, preserving their order. The value of the jump-17

argument is the instance.18

2) Otherwise:19

i) Construct a list of values from the argument-list as described in 11.3.2 and let L20

be the resulting list.21

ii) If the length of L is 1, the value of the jump-argument is the only element of L.22

iii) If the length of L is larger than 1, create a direct instance of the class Array23

and store the elements of L in it, preserving their order. The value of the jump-24

argument is the instance of the class Array.25

11.5.2.4.3 The break expression26

Syntax27

break-expression ::=28

break-without-argument29

| break-with-argument30

break-without-argument ::31

break32

93

break-with-argument ::1

break jump-argument2

Semantics3

A break-expression is evaluated as follows:4

a) Evaluate the jump-argument, if any, as described in 11.5.2.4.2 b).5

b) If the current block is present, terminate the evaluation of the block-body of the current6

block (see 11.3.3).7

c) If the current iteration-expression is present, terminate the evaluation of the condition8

expression of the current iteration-expression (see 11.5.2.3) when the break-expression is in9

the condition expression, or terminate the body of the current iteration-expression when10

the break-expression is in the body.11

d) If the current block or the current iteration-expression is not present:12

1) Let S be a direct instance of the class Symbol with name break.13

2) If the jump-argument of the break-expression is present, let V be the value of the14

jump-argument. Otherwise, let V be nil.15

3) Raise a direct instance of the class LocalJumpError which has two instance variable16

bindings, one named @reason with the value S and the other named @exit value with17

the value V.18

11.5.2.4.4 The next expression19

Syntax20

next-expression ::=21

next-without-argument22

| next-with-argument23

next-without-argument ::24

next25

next-with-argument ::26

next jump-argument27

Semantics28

A next-expression is evaluated as follows:29

a) Evaluate the jump-argument, if any, as described in 11.5.2.4.2 b).30

94

b) If the current block is present, terminate the evaluation of the block-body of the current1

block (see 11.3.3).2

c) If the current iteration-expression is present, terminate the evaluation of the condition3

expression of the current iteration-expression (see 11.5.2.3) when the next-expression is in4

the condition expression, or terminate the body of the current iteration-expression when5

the next-expression is in the body.6

d) If the current block or the current iteration-expression is not present:7

1) Let S be a direct instance of the class Symbol with name next.8

2) If the jump-argument of the next-expression is present, let V be the value of the jump-9

argument. Otherwise, let V be nil.10

3) Raise a direct instance of the class LocalJumpError which has two instance variable11

bindings, one named @reason with the value S and the other named @exit value with12

the value V.13

11.5.2.4.5 The redo expression14

Syntax15

redo-expression ::16

redo17

Semantics18

A redo-expression is evaluated as follows:19

a) If the current block is present, terminate the evaluation of the block-body of the current20

block (see 11.3.3).21

b) If the current iteration-expression is present, terminate the evaluation of the condition22

expression of the current iteration-expression (see 11.5.2.3) when the redo-expression is in23

the condition expression, or terminate the body of the current iteration-expression when24

the redo-expression is in the body.25

c) If the current block or the current iteration-expression is not present:26

1) Let S be a direct instance of the class Symbol with name redo.27

2) Raise a direct instance of the class LocalJumpError which has two instance variable28

bindings, one named @reason with the value S and the other named @exit value with29

the value nil.30

11.5.2.4.6 The retry expression31

Syntax32

95

retry-expression ::1

retry2

Semantics3

A retry-expression is evaluated as follows:4

a) If the current method invocation (see 13.3.3) exists, let M be the method-body which cor-5

responds to the current method invocation. Otherwise, let M be the program (see 10.1).6

b) Let E be the innermost rescue-clause in M which encloses the retry-expression. If such a7

rescue-clause does not exist, the behavior is unspecified.8

c) Terminate the evaluation of the compound-statement of the then-clause of E (see 11.5.2.5).9

11.5.2.5 The begin expression10

Syntax11

begin-expression ::12

begin body-statement end13

body-statement ::14

compound-statement rescue-clause ∗ else-clause ? ensure-clause ?
15

rescue-clause ::16

rescue [no line-terminator here] exception-class-list ?
17

exception-variable-assignment ? then-clause18

exception-class-list ::19

operator-expression20

| multiple-right-hand-side21

exception-variable-assignment ::22

=> left-hand-side23

ensure-clause ::24

ensure compound-statement25

Semantics26

The value of a begin-expression is the resulting value of the body-statement.27

A body-statement is evaluated as follows:28

96

a) Evaluate the compound-statement of the body-statement.1

b) If no exception is raised, or all the raised exceptions are handled during Step a):2

1) If the else-clause is present, evaluate the else-clause as described in 11.5.2.2.2.3

2) If the ensure-clause is present, evaluate its compound-statement. The value of the4

ensure-clause is the value of this evaluation.5

3) If both the else-clause and the ensure-clause are present, the value of the body-statement6

is the value of the ensure-clause. If only one of these clauses is present, the value of7

the body-statement is the value of the clause.8

4) If neither the else-clause nor the ensure-clause is present, the value of the body-9

statement is the value of its compound-statement.10

c) If an exception is raised and not handled during Step a), test each rescue-clause, if any, in11

the order it occurs in the program text. The test determines whether the rescue-clause can12

handle the exception as follows:13

1) Let E be the exception raised.14

2) If the exception-class-list is omitted in the rescue-clause, and if E is an instance of the15

class StandardError, the rescue-clause handles E.16

3) If the exception-class-list of the rescue-clause is present:17

i) If the exception-class-list is of the form operator-expression, evaluate the operator-18

expression. Create an empty list of values, and append the value of the operator-19

expression to the list.20

ii) If the exception-class-list is of the form multiple-right-hand-side, construct a list21

of values from the multiple-right-hand-side (see 11.4.2.4).22

iii) Let L be the list created by evaluating the exception-class-list as above. For each23

element D of L:24

I) If D is neither the class Exception nor a subclass of the class Exception,25

raise a direct instance of the class TypeError.26

II) If E is an instance of D, the rescue-clause handles E. In this case, any re-27

maining rescue-clauses in the body-statement are not tested.28

d) If a rescue-clause R which can handle E is found:29

1) If the exception-variable-assignment of R is present, evaluate it in the same way as30

a multiple-assignment-statement of the form left-hand-side = multiple-right-hand-side31

where the value of multiple-right-hand-side is E.32

2) Evaluate the compound-statement of the then-clause of R. If this evaluation is termi-33

nated by a retry-expression, continue processing from Step a). Otherwise, let V be the34

value of this evaluation.35

97

3) If the ensure-clause is present, evaluate it. The value of the body-statement is the value1

of the ensure-clause.2

4) If the ensure-clause is omitted, the value of the body-statement is V.3

e) If no rescue-clause is present or if a rescue-clause which can handle E is not found:4

1) If the ensure-clause is present, evaluate it.5

2) The value of the body-statement is unspecified.6

The ensure-clause of a body-statement, if any, is always evaluated, even when the evaluation of7

body-statement is terminated by a jump-expression.8

11.5.3 Grouping expression9

Syntax10

grouping-expression ::11

(expression)12

| (compound-statement)13

Semantics14

A grouping-expression is evaluated as follows:15

a) Evaluate the expression or the compound-statement.16

b) The value of the grouping-expression is the resulting value.17

11.5.4 Variable references18

11.5.4.1 General description19

Syntax20

variable-reference ::21

variable22

| pseudo-variable23

variable ::24

constant-identifier25

| global-variable-identifier26

| class-variable-identifier27

| instance-variable-identifier28

| local-variable-identifier29

scoped-constant-reference ::30

primary-expression [no line-terminator here] [no whitespace here] :: constant-31

98

identifier1

| :: constant-identifier2

See from 11.5.4.2 to 11.5.4.7 for variable and scoped-constant-references.3

See 11.5.4.8 for pseudo-variables.4

11.5.4.2 Constants5

A constant-identifier is evaluated as follows:6

a) Let N be the constant-identifier.7

b) Search for a binding of a constant with name N as described below.8

As soon as the binding is found in any of the following steps, the evaluation of the constant-9

identifier is terminated and the value of the constant-identifier is the value of the binding10

found.11

c) Let L be the top of [class-module-list] . Search for a binding of a constant with name N in12

each element of L from start to end, including the first element, which is the current class13

or module, but except for the last element, which is the class Object.14

d) If a binding is not found, let C be the current class or module.15

Let L be the included module list of C. Search each element of L in the reverse order for a16

binding of a constant with name N.17

e) If the binding is not found:18

1) If C is an instance of the class Class:19

i) If C does not have a direct superclass, create a direct instance of the class Symbol20

with name N, and let R be that instance. Invoke the method const missing on21

the current class or module with R as the only argument.22

ii) Let S be the direct superclass of C.23

iii) Search for a binding of a constant with name N in S.24

iv) If the binding is not found, let L be the included module list of S and search each25

element of L in the reverse order for a binding of a constant with name N.26

v) If the binding is not found, let C be the direct superclass of S. Continue processing27

from Step e) 1) i).28

2) If C is not an instance of the class Class:29

i) Search for a binding of a constant with name N in the class Object.30

99

ii) If the binding is not found, let L be the included module list of the class Object1

and search each element of L in the reverse order for a binding of a constant with2

name N.3

iii) If the binding is not found, create a direct instance of the class Symbol with name4

N, and let R be that instance. Invoke the method const missing on the current5

class or module with R as the only argument.6

11.5.4.3 Scoped constants7

A scoped-constant-reference is evaluated as follows:8

a) If the primary-expression is present, evaluate it and let C be the resulting value. Otherwise,9

let C be the class Object.10

b) If C is not an instance of the class Module, raise a direct instance of the class TypeError.11

c) Otherwise:12

1) Let N be the constant-identifier.13

2) If a binding with name N exists in the set of bindings of constants of C, the value of14

the scoped-constant-reference is the value of the binding.15

3) Otherwise:16

i) Let L be the included module list of C. Search each element of L in the reverse17

order for a binding of a constant with name N.18

ii) If the binding is found, the value of the scoped-constant-reference is the value of19

the binding.20

iii) Otherwise, if C is an instance of the class Class, search for a binding of a constant21

with name N from Step e) of 11.5.4.2.22

iv) Otherwise, create a direct instance of the class Symbol with name N, and let R23

be that instance. Invoke the method const missing on C with R as the only24

argument.25

11.5.4.4 Global variables26

A global-variable-identifier is evaluated as follows:27

a) Let N be the global-variable-identifier.28

b) If a binding with name N exists in [global-variable-bindings] , the value of global-variable-29

identifier is the value of the binding.30

c) Otherwise, the value of global-variable-identifier is nil.31

11.5.4.5 Class variables32

A class-variable-identifier is evaluated as follows:33

100

a) Let N be the class-variable-identifier. Let C be the first class or module in the list at the1

top of [class-module-list] which is not a singleton class.2

b) Let CS be the set of classes which consists of C and all the superclasses of C. Let MS be3

the set of modules which consists of all the modules in the included module list of all classes4

in CS. Let CM be the union of CS and MS.5

c) If a binding with name N exists in the set of bindings of class variables of only one of the6

classes or modules in CM, let V be the value of the binding.7

d) If more than two classes or modules in CM have a binding with name N in the set of8

bindings of class variables, let V be the value of one of these bindings. Which binding is9

selected is implementation-defined.10

e) If none of the classes or modules in CM has a binding with name N in the set of bindings11

of class variables, let S be a direct instance of the class Symbol with name N and raise a12

direct instance of the class NameError which has S as its name attribute.13

f) The value of the class-variable-identifier is V.14

11.5.4.6 Instance variables15

An instance-variable-identifier is evaluated as follows:16

a) Let N be the instance-variable-identifier.17

b) If a binding with name N exists in the set of bindings of instance variables of the current18

self, the value of the instance-variable-identifier is the value of the binding.19

c) Otherwise, the value of the instance-variable-identifier is nil.20

11.5.4.7 Local variables or method invocations21

11.5.4.7.1 General description22

An occurrence of a local-variable-identifier in a variable-reference is evaluated as either a refer-23

ence to a local variable or a method invocation.24

11.5.4.7.2 Determination of the type of local variable identifiers25

Whether the occurrence of a local-variable-identifier I is a reference to a local variable or a26

method invocation is determined as follows:27

a) Let P be the point of the program text where I occurs.28

b) Let S be the innermost local variable scope which encloses P and which does not correspond29

to a block (see 9.2).30

c) Let R be the region of the program text between the beginning of S and P.31

d) If the same identifier as I occurs as a reference to a local variable in variable-reference in32

R, then I is a reference to a local variable.33

101

e) If the same identifier as I occurs in one of the the forms below in R, then I is a reference1

to a local variable.2

� mandatory-parameter3

� optional-parameter-name4

� array-parameter-name5

� proc-parameter-name6

� variable of left-hand-side7

� variable of single-variable-assignment-expression8

� variable of single-variable-assignment-statement9

� variable of abbreviated-variable-assignment-expression10

� variable of abbreviated-variable-assignment-statement11

f) Otherwise, I is a method invocation.12

11.5.4.7.3 Local variables13

If a local-variable-identifier is a reference to a local variable, it is evaluated as follows:14

a) Let N be the local-variable-identifier.15

b) Search for a binding of a local variable with name N as described in 9.2.16

c) If a binding is found, the value of local-variable-identifier is the value of the binding.17

d) Otherwise, the value of local-variable-identifier is nil.18

11.5.4.7.4 Method invocations19

If a local-variable-identifier is a method invocation, it is evaluated as follows:20

a) Let N be the local-variable-identifier.21

b) Create an empty list of arguments L, and invoke the method N on the current self with L22

as the list of arguments (see 13.3.3).23

11.5.4.8 Pseudo variables24

11.5.4.8.1 General description25

Syntax26

102

pseudo-variable ::1

nil-expression2

| true-expression3

| false-expression4

| self-expression5

NOTE A pseudo-variable has a similar form to a local-variable-identifier, but is not a variable.6

11.5.4.8.2 The nil expression7

Syntax8

nil-expression ::9

nil10

Semantics11

A nil-expression evaluates to nil, which is the only instance of the class NilClass (see 6.6).12

11.5.4.8.3 The true expression and the false expression13

Syntax14

true-expression ::15

true16

false-expression ::17

false18

Semantics19

A true-expression evaluates to true, which is the only instance of the class TrueClass. A20

false-expression evaluates to false, which is the only instance of the class FalseClass (see 6.6).21

11.5.4.8.4 The self expression22

Syntax23

self-expression ::24

self25

103

Semantics1

A self-expression evaluates to the value of the current self.2

11.5.5 Object constructors3

11.5.5.1 Array constructor4

Syntax5

array-constructor ::6

[indexing-argument-list ?]7

Semantics8

An array-constructor is evaluated as follows:9

a) If there is an indexing-argument-list, construct a list of arguments from the indexing-10

argument-list as described in 11.3.2. Let L be the resulting list.11

b) Otherwise, create an empty list of values L.12

c) Create a direct instance of the class Array (see 15.2.12) which stores the values in L in the13

same order they are stored in L. Let O be the instance.14

d) The value of the array-constructor is O.15

11.5.5.2 Hash constructor16

Syntax17

hash-constructor ::18

{ (association-list [no line-terminator here] ,?)? }19

association-list ::20

association ([no line-terminator here] , association)∗21

association ::22

association-key [no line-terminator here] => association-value23

association-key ::24

operator-expression25

association-value ::26

operator-expression27

104

Semantics1

a) A hash-constructor is evaluated as follows:2

1) If there is an association-list, evaluate the association-list. The value of the hash-3

constructor is the resulting value.4

2) Otherwise, create an empty direct instance of the class Hash. The value of the hash-5

constructor is the resulting instance.6

b) An association-list is evaluated as follows:7

1) Create an empty direct instance H of the class Hash.8

2) For each association Ai, in the order it appears in the program text, take the following9

steps:10

i) Evaluate the operator-expression of the association-key of Ai. Let Ki be the re-11

sulting value.12

ii) Evaluate the operator-expression of the association-value. Let Vi be the resulting13

value.14

iii) Store a pair of Ki and Vi in H by invoking the method []= on H with Ki and Vi15

as the arguments.16

3) The value of the association-list is H.17

11.5.5.3 Range constructor18

Syntax19

range-constructor ::20

operator-OR-expression21

| operator-OR-expression 1 [no line-terminator here] range-operator operator-OR-22

expression 223

range-operator ::24

..25

| ...26

Semantics27

A range-constructor of the form operator-OR-expression1 range-operator operator-OR-expression228

is evaluated as follows:29

a) Evaluate the operator-OR-expression1. Let A be the resulting value.30

b) Evaluate the operator-OR-expression2. Let B be the resulting value.31

105

c) If the range-operator is the terminal “..”, construct a list L which contains three arguments:1

A, B, and false.2

If the range-operator is the terminal “...”, construct a list L which contains three argu-3

ments: A, B, and true.4

d) Invoke the method new on the class Range (see 15.2.14) with L as the list of arguments.5

The value of the range-constructor is the resulting value.6

12 Statements7

12.1 General description8

Syntax9

statement ::10

expression-statement11

| alias-statement12

| undef-statement13

| if-modifier-statement14

| unless-modifier-statement15

| while-modifier-statement16

| until-modifier-statement17

| rescue-modifier-statement18

| assignment-statement19

Semantics20

See 13.3.6 for alias-statements.21

See 13.3.7 for undef-statements.22

See 11.4.2 for assignment-statements.23

12.2 The expression statement24

Syntax25

expression-statement ::26

expression27

Semantics28

An expression-statement is evaluated as follows:29

a) Evaluate the expression.30

106

b) The value of the expression-statement is the resulting value.1

12.3 The if modifier statement2

Syntax3

if-modifier-statement ::4

statement [no line-terminator here] if expression5

Semantics6

An if-modifier-statement of the form S if E, where S is the statement and E is the expression,7

is evaluated as follows:8

a) Evaluate the if-expression of the form if E then S end.9

b) The value of the if-modifier-statement is the resulting value.10

12.4 The unless modifier statement11

Syntax12

unless-modifier-statement ::13

statement [no line-terminator here] unless expression14

Semantics15

An unless-modifier-statement of the form S unless E, where S is the statement and E is the16

expression, is evaluated as follows:17

a) Evaluate the unless-expression of the form unless E then S end.18

b) The value of the unless-modifier-statement is the resulting value.19

12.5 The while modifier statement20

Syntax21

while-modifier-statement ::22

statement [no line-terminator here] while expression23

Semantics24

A while-modifier-statement of the form S while E, where S is the statement and E is the25

expression, is evaluated as follows:26

107

a) If S is a begin-expression, the behavior is implementation-defined.1

b) Evaluate the while-expression of the form while E do S end.2

c) The value of the while-modifier-statement is the resulting value.3

12.6 The until modifier statement4

Syntax5

until-modifier-statement ::6

statement [no line-terminator here] until expression7

Semantics8

An until-modifier-statement of the form S until E, where S is the statement and E is the9

expression, is evaluated as follows:10

a) If S is a begin-expression, the behavior is implementation-defined.11

b) Evaluate the until-expression of the form until E do S end.12

c) The value of the until-modifier-statement is the resulting value.13

12.7 The rescue modifier statement14

Syntax15

rescue-modifier-statement ::16

main-statement-of-rescue-modifier-statement [no line-terminator here]17

rescue fallback-statement-of-rescue-modifier-statement18

main-statement-of-rescue-modifier-statement ::19

statement20

fallback-statement-of-rescue-modifier-statement ::21

statement but not statement-not-allowed-in-fallback-statement22

statement-not-allowed-in-fallback-statement ::23

keyword-AND-expression24

| keyword-OR-expression25

| if-modifier-statement26

| unless-modifier-statement27

| while-modifier-statement28

| until-modifier-statement29

| rescue-modifier-statement30

108

Semantics1

A rescue-modifier-statement is evaluated as follows:2

a) Evaluate the main-statement-of-rescue-modifier-statement. Let V be the resulting value.3

b) If a direct instance of the class StandardError is raised and not handled in Step a), evaluate4

fallback-statement-of-rescue-modifier-statement. The value of the rescue-modifier-statement5

is the resulting value.6

c) If no instances of the class Exception are raised in Step a), or all the instances of the7

class Exception raised in Step a) are handled in Step a), the value of the rescue-modifier-8

statement is V.9

13 Classes and modules10

13.1 Modules11

13.1.1 General description12

Every module is an instance of the class Module (see 15.2.2). However, not every instance of the13

class Module is a module because the class Module is a superclass of the class Class, an instance14

of which is not a module, but a class.15

Modules have the following attributes:16

Included module list: A list of modules included in the module. Module inclusion is17

described in 13.1.3.18

Constants: A set of bindings of constants.19

A binding of a constant is created by the following program constructs:20

� Assignments (see 11.4.2)21

� Module-definitions (see 13.1.2)22

� Class-definitions (see 13.2.2)23

Class variables: A set of bindings of class variables. A binding of a class variable is24

created by an assignment (see 11.4.2).25

Instance methods: A set of method bindings. A method binding is created by a method-26

definition (see 13.3.1), a singleton-method-definition (see 13.4.3), an alias-statement (see27

13.3.6) or an undef-statement (see 13.3.7). The value of a method binding may be undef ,28

which is the flag indicating that a method cannot be invoked (see 13.3.7).29

13.1.2 Module definition30

Syntax31

109

module-definition ::1

module module-path module-body end2

module-path ::3

top-module-path4

| module-name5

| nested-module-path6

module-name ::7

constant-identifier8

top-module-path ::9

:: module-name10

nested-module-path ::11

primary-expression [no line-terminator here] :: module-name12

module-body ::13

body-statement14

Semantics15

A module-definition is evaluated as follows:16

a) Determine the class or module C in which a binding with name module-name is to be17

created or modified as follows:18

1) If the module-path is of the form top-module-path, let C be the class Object.19

2) If the module-path is of the form module-name, let C be the current class or module.20

3) If the module-path is of the form nested-module-path, evaluate the primary-expression.21

If the resulting value is an instance of the class Module, let C be the instace. Otherwise,22

raise a direct instance of the class TypeError.23

b) Let N be the module-name.24

1) If a binding with name N exists in the set of bindings of constants of C, let B be this25

binding. If the value of B is a module, let M be that module. Otherwise, raise a direct26

instance of the class TypeError.27

2) Otherwise, create a direct instance M of the class Module. Create a variable binding28

with name N and value M in the set of bindings of constants of C.29

c) Modify the execution context as follows:30

110

1) Create a new list which has the same members as that of the list at the top of [class-1

module-list] , and add M to the head of the newly created list. Push the list onto2

[class-module-list] .3

2) Push M onto [self] .4

3) Push the public visibility onto [default-method-visibility] .5

4) Push an empty set of bindings onto [local-variable-bindings] .6

d) Evaluate the body-statement (see 11.5.2.5) of the module-body. The value of the module-7

definition is the resulting value of the body-statement.8

e) Restore the execution context by removing the elements from the tops of [class-module-list] ,9

[self] , [default-method-visibility] , and [local-variable-bindings] .10

13.1.3 Module inclusion11

Modules and classes can be extended by including other modules into them. When a module is12

included, the instance methods, the class variables, and the constants of the included module13

are available to the including class or module (see 11.5.4.5, 13.3.3, and 11.5.4.2).14

Modules and classes can include other modules by invoking the method include (see 15.2.2.4.27)15

or the method extend (see 15.3.1.3.13).16

A module M is included in another module N if and only if M is an element of the included17

module list of N. A module M is included in a class C if and only if M is an element of the18

included module list of C, or M is included in one of the superclasses of C.19

13.2 Classes20

13.2.1 General description21

Every class is an instance of the class Class (see 15.2.3), which is a direct subclass of the class22

Module.23

Classes have the same set of attributes as modules. In addition, every class has at most one24

single direct superclass.25

13.2.2 Class definition26

Syntax27

class-definition ::28

class class-path [no line-terminator here] (< superclass)? separator29

class-body end30

class-path ::31

top-class-path32

| class-name33

| nested-class-path34

111

class-name ::1

constant-identifier2

top-class-path ::3

:: class-name4

nested-class-path ::5

primary-expression [no line-terminator here] :: class-name6

superclass ::7

expression8

class-body ::9

body-statement10

Semantics11

A class-definition is evaluated as follows:12

a) Determine the class or module M in which the binding with name class-name is to be13

created or modified as follows:14

1) If the class-path is of the form top-class-path, let M be the class Object.15

2) If the class-path is of the form class-name, let M be the current class or module.16

3) If the class-path is of the form nested-class-path, evaluate the primary-expression. If17

the resulting value is an instance of the class Module, let M be the instance. Otherwise,18

raise a direct instance of the class TypeError.19

b) Let N be the class-name.20

1) If a binding with name N exists in the set of bindings of constants of M, let B be that21

binding.22

i) If the value of B is an instance of the class Class, let C be the instance. Otherwise,23

raise a direct instance of the class TypeError.24

ii) If the superclass is present, evaluate it. If the resulting value does not correspond25

to the direct superclass of C, raise a direct instance of the class TypeError.26

2) Otherwise, create a direct instance of the class Class. Let C be that class.27

i) If the superclass is present, evaluate it. If the resulting value is not an instance28

of the class Class, raise a direct instance of the class TypeError. If the value of29

the superclass is a singleton class or the class Class, the behavior is unspecified.30

Otherwise, set the direct superclass of C to the value of the superclass.31

112

ii) If the superclass of the class-definition is omitted, set the direct superclass of C1

to the class Object.2

iii) Create a singleton class, and associate it with C. It shall have the singleton class3

of the direct superclass of C as one of its superclasses.4

iv) Create a variable binding with name N and value C in the set of bindings of5

constants of M.6

c) Modify the execution context as follows:7

1) Create a new list which has the same members as that of the list at the top of [class-8

module-list] , and add C to the head of the newly created list. Push the list onto9

[class-module-list] .10

2) Push C onto [self] .11

3) Push the public visibility onto [default-method-visibility] .12

4) Push an empty set of bindings onto [local-variable-bindings] .13

d) Evaluate the body-statement (see 11.5.2.5) of the class-body. The value of the class-definition14

is the resulting value of the body-statement.15

e) Restore the execution context by removing the elements from the tops of [class-module-list] ,16

[self] , [default-method-visibility] , and [local-variable-bindings] .17

13.2.3 Inheritance18

A class inherits attributes of its superclasses. Inheritance means that a class implicitly contains19

all attributes of its superclasses, as described below:20

� Constants and class variables of superclasses can be referred to (see 11.5.4.2 and 11.5.4.5).21

� Singleton methods of superclasses can be invoked (see 13.4).22

� Instance methods defined in superclasses can be invoked on an instance of their subclasses23

(see 13.3.3).24

13.2.4 Instance creation25

A direct instance of a class can be created by invoking the method new (see 15.2.3.3.3) on the26

class.27

13.3 Methods28

13.3.1 Method definition29

Syntax30

113

method-definition ::1

def defined-method-name [no line-terminator here] method-parameter-part2

method-body end3

defined-method-name ::4

method-name5

| assignment-like-method-identifier6

method-body ::7

body-statement8

The following constructs shall not be present in the method-parameter-part or the method-body :9

� A class-definition.10

� A module-definition.11

� A single-variable-assignment, where its variable is a constant-identifier.12

� A scoped-constant-assignment.13

� A multiple-assignment-statement in which there exists a left-hand-side of any of the follow-14

ing forms:15

— constant-identifier ;16

— primary-expression [no line-terminator here] (. | ::) (local-variable-identifier | constant-17

identifier);18

— :: constant-identifier.19

However, those constructs may occur within a singleton-class-definition in the method-parameter-20

part or the method-body.21

Semantics22

A method is defined by a method-definition or a singleton-method-definition (see 13.4.3), and has23

the method-parameter-part and the method-body of the method-definition or singleton-method-24

definition. The method-body is evaluated when the method is invoked (see 13.3.3). The evalu-25

ation of the method-body is the evaluation of its body-statement (see 11.5.2.5). In addition, a26

method has the following attributes:27

Class module list: The list of classes and modules which is the top element of [class-28

module-list] when the method is defined.29

Defined name: The name with which the method is defined.30

Visibility: The visibility of the method (see 13.3.5).31

114

A class or a module can define a new method with the same name as the name of a method in1

one of its superclasses or included modules of the class or module. In that case, the new method2

is said to override the method in the superclass or the included module.3

A method-definition is evaluated as follows:4

a) Let N be the defined-method-name.5

b) Create a method U defined by the method-definition. Initialize the attributes of U as6

follows:7

� The class module list is the element at the top of [class-module-list] .8

� The defined name is N.9

� The visibility is:10

— If the current class or module is a singleton class, then the current visibility.11

— Otherwise, if N is initialize or initialize copy, then the private visibility.12

— Otherwise, the current visibility.13

c) If a method binding with name N exists in the set of bindings of instance methods of the14

current class or module, let V be the value of that binding.15

1) If V is undef, the evaluation of the method-definition is implementation-defined.16

2) Replace the value of the binding with U.17

d) Otherwise, create a method binding with name N and value U in the set of bindings of18

instance methods of the current class or module.19

e) The value of the method-definition is implementation-defined.20

13.3.2 Method parameters21

Syntax22

method-parameter-part ::23

(parameter-list ?)24

| parameter-list ? separator25

parameter-list ::26

mandatory-parameter-list (, optional-parameter-list)?27

(, array-parameter)? (, proc-parameter)?28

| optional-parameter-list (, array-parameter)? (, proc-parameter)?29

| array-parameter (, proc-parameter)?30

| proc-parameter31

115

mandatory-parameter-list ::1

mandatory-parameter2

| mandatory-parameter-list , mandatory-parameter3

mandatory-parameter ::4

local-variable-identifier5

optional-parameter-list ::6

optional-parameter7

| optional-parameter-list , optional-parameter8

optional-parameter ::9

optional-parameter-name = default-parameter-expression10

optional-parameter-name ::11

local-variable-identifier12

default-parameter-expression ::13

operator-expression14

array-parameter ::15

* array-parameter-name16

| *17

array-parameter-name ::18

local-variable-identifier19

proc-parameter ::20

& proc-parameter-name21

proc-parameter-name ::22

local-variable-identifier23

All the local-variable-identifiers of mandatory-parameters, optional-parameter-names, the array-24

parameter-name, and the proc-parameter-name in a parameter-list shall be different.25

Semantics26

There are four kinds of parameters as described below. How those parameters are bound to the27

actual arguments is described in 13.3.3.28

Mandatory parameters: These parameters are represented by mandatory-parameters.29

For each mandatory parameter, a corresponding actual argument shall be given when the30

method is invoked.31

Optional parameters: These parameters are represented by optional-parameters. Each32

116

optional parameter consists of a parameter name represented by optional-parameter-name1

and an expression represented by default-parameter-expression. For each optional parame-2

ter, when there is no corresponding argument in the list of arguments given to the method3

invocation, the value of the default-parameter-expression is used as the value of the argu-4

ment.5

An array parameter: This parameter is represented by array-parameter-name. Let N be6

the number of arguments, excluding a block-argument, given to a method invocation. If N7

is more than the sum of the number of mandatory parameters and optional parameters, this8

parameter is bound to a direct instance of the class Array containing the extra arguments9

excluding a block-argument. Otherwise, the parameter is bound to an empty direct instance10

of the class Array. If an array-parameter is of the form “*”, those extra arguments are11

ignored.12

A proc parameter: This parameter is represented by proc-parameter-name. The param-13

eter is bound to a direct instance of the class Proc which represents the block passed to the14

method invocation.15

13.3.3 Method invocation16

The way in which a list of arguments is created is described in 11.3.17

Given the receiver R, the method name M, and the list of arguments A, take the following steps:18

a) If the method is invoked with a block, let B be the block. Otherwise, let B be block-not-19

given.20

b) Let C be the singleton class of R if R has a singleton class. Otherwise, let C be the class21

of R.22

c) Search for a method binding with name M, starting from C as described in 13.3.4.23

d) If a binding is found and its value is not undef, let V be the value of the binding.24

e) Otherwise, if M is method missing, the behavior is unspecified. If M is not method missing,25

add a direct instance of the class Symbol with name M to the head of A, and invoke the26

method method missing (see 15.3.1.3.30) on R with A as arguments and B as the block.27

Let O be the resulting value, and go to Step j).28

f) Check the visibility of V to see whether the method can be invoked (see 13.3.5). If the29

method cannot be invoked, add a direct instance of the class Symbol with name M to the30

head of A, and invoke the method method missing on R with A as arguments and B as31

the block. Let O be the resulting value, and go to Step j).32

g) Modify the execution context as follows:33

1) Push the class module list of V onto [class-module-list] .34

2) Push R onto [self] .35

3) Push M onto [invoked-method-name] .36

4) Push the public visibility to [default-method-visibility] .37

117

5) Push the defined name of V onto [defined-method-name] .1

6) Push B onto [block] .2

7) Push an empty set of local variable bindings onto [local-variable-bindings] .3

h) Evaluate the method-parameter-part of V as follows:4

1) Let L be the parameter-list of the method-parameter-part.5

2) Let Pm, Po, and Pa be the mandatory-parameters of the mandatory-parameter-list,6

the optional-parameters of the optional-parameter-list, and the array-parameter of L,7

respectively. Let NA, NP m, and NP o be the number of elements of A, Pm, and Po8

respectively. If there are no mandatory-parameters or optional-parameters, let NP m9

and NP o be 0. Let Sb be the current set of local variable bindings.10

3) If NA is smaller than NP m, raise a direct instance of the class ArgumentError.11

4) If the method does not have Pa and NA is larger than the sum of NP m and NP o, raise12

a direct instance of the class ArgumentError.13

5) Otherwise, for each ith argument Ai in A, in the same order in A, take the following14

steps:15

i) Let Pi be the ith mandatory-parameter or optional-parameter in the order it ap-16

pears in L.17

ii) If such Pi does not exist, go to Step h) 6).18

iii) If Pi is a mandatory parameter, let n be the mandatory-parameter. If Pi is an op-19

tional parameter, let n be the optional-parameter-name. Create a variable binding20

with name n and value Ai in Sb.21

6) If NA is larger than the sum of NP m and NP o, and Pa exists:22

i) Create a direct instance X of the class Array whose length is the number of extra23

arguments.24

ii) Store each extra arguments into X, preserving the order in which they occur in25

the list of arguments.26

iii) Let n be the array-parameter-name of Pa.27

iv) Create a variable binding with name n and value X in Sb.28

7) If NA is smaller than the sum of NP m and NP o:29

i) For each optional parameter POi to which no argument corresponds, evaluate the30

default-parameter-expression of POi, and let X be the resulting value.31

ii) Let n be the optional-parameter-name of POi.32

118

iii) Create a variable binding with name n and value X in Sb.1

8) If NA is smaller than or equal to the sum of NP m and NP o, and Pa exists:2

i) Create an empty direct instance X of the class Array.3

ii) Let n be the array-parameter-name of Pa.4

iii) Create a variable binding with name n and value X in Sb.5

9) If the proc-parameter of L is present, let D be the top of [block] .6

i) If D is block-not-given, let X be nil.7

ii) Otherwise, invoke the method new on the class Proc with an empty list of argu-8

ments and D as the block. Let X be the resulting value of the method invocation.9

iii) Let n be the proc-parameter-name of proc-parameter.10

iv) Create a variable binding with name n and value X in Sb.11

i) Evaluate the method-body of V.12

1) If the evaluation of the method-body is terminated by a return-expression:13

i) If the jump-argument of the return-expression is present, let O be the value of the14

jump-argument.15

ii) Otherwise, let O be nil.16

2) Otherwise, let O be the resulting value of the evaluation.17

j) Restore the execution context by removing the elements from the tops of [class-module-18

list] , [self] , [invoked-method-name] , [default-method-visibility] , [defined-method-name] ,19

[block] , and [local-variable-bindings] .20

k) The value of the method invocation is O.21

The method invocation or the super-expression [see 11.3.4 d)] which corresponds to the set of22

items on the tops of all the attributes of the execution context modified in Step g), except23

[local-variable-bindings] , is called the current method invocation.24

13.3.4 Method lookup25

Method lookup is the process by which a binding of an instance method is resolved.26

Given a method name M and a class or a module C which is initially searched for the binding27

of the method, the method binding is resolved as follows:28

a) If a method binding with name M exists in the set of bindings of instance methods of C,29

let B be that binding.30

119

b) Otherwise, let Lm be the included module list of C. Search for a method binding with name1

M in the set of bindings of instance methods of each module in Lm. Examine modules in2

Lm in reverse order.3

1) If a binding is found, let B be that binding.4

2) Otherwise:5

i) If C does not have a direct superclass, the binding is considered not resolved.6

ii) Otherwise, let new C be the direct superclass of C, and continue processing from7

Step a).8

B is the resolved method binding.9

10

13.3.5 Method visibility11

13.3.5.1 General description12

Methods are categorized into one of public, private, or protected methods according to the13

conditions under which the method invocation is allowed. The attribute of a method which14

determines these conditions is called the visibility of the method.15

13.3.5.2 Public methods16

A public method is a method whose visibility attribute is set to the public visibility.17

A public method can be invoked on an object anywhere within a program.18

13.3.5.3 Private methods19

A private method is a method whose visibility attribute is set to the private visibility.20

A private method cannot be invoked with an explicit receiver, i.e., a private method cannot21

be invoked if a primary-expression or a chained-method-invocation occurs at the position which22

corresponds to the method receiver in the method invocation, except for a method invocation23

of any of the following forms where the primary-expression is a self-expression.24

c)� single-method-assignment25

� abbreviated-method-assignment26

� single-indexing-assignment27

� abbreviated-indexing-assignment28

13.3.5.4 Protected methods29

A protected method is a method whose visibility attribute is set to the protected visibility.30

A protected method can be invoked if and only if the following condition holds:31

120

� Let M be an instance of the class Module in which the binding of the method exists.1

M is included in the current self, or M is the class of the current self or one of its superclasses.2

If M is a singleton class, whether the method can be invoked or not may be determined in a3

implementation-defined way.4

13.3.5.5 Visibility change5

The visibility of methods can be changed with the methods public (see 15.2.2.4.38), private6

(see 15.2.2.4.36), and protected (see 15.2.2.4.37), which are defined in the class Module.7

13.3.6 The alias statement8

Syntax9

alias-statement ::10

alias new-name aliased-name11

new-name ::12

defined-method-name13

| symbol14

aliased-name ::15

defined-method-name16

| symbol17

Semantics18

An alias-statement is evaluated as follows:19

a) Evaluate the new-name as follows:20

1) If the new-name is of the form defined-method-name, let N be the defined-method-name.21

2) If the new-name is of the form symbol, evaluate it. Let N be the name of the resulting22

instance of the class Symbol.23

b) Evaluate the aliased-name as follows:24

1) If aliased-name is of the form defined-method-name, let A be the defined-method-name.25

2) If aliased-name is of the form symbol, evaluate it. Let A be the name of the resulting26

instance of the class Symbol.27

c) Let C be the current class or module.28

d) Search for a method binding with name A, starting from C as described in 13.3.4.29

121

e) If a binding is found and its value is not undef, let V be the value of the binding.1

f) Otherwise, let S be a direct instance of the class Symbol with name A and raise a direct2

instance of the class NameError which has S as its name attribute.3

g) If a method binding with name N exists in the set of bindings of instance methods of the4

current class or module, replace the value of the binding with V.5

h) Otherwise, create a method binding with name N and value V in the set of bindings of6

instance methods of the current class or module.7

i) The value of the alias-statement is nil.8

13.3.7 The undef statement9

Syntax10

undef-statement ::11

undef undef-list12

undef-list ::13

method-name-or-symbol (, method-name-or-symbol)∗14

method-name-or-symbol ::15

defined-method-name16

| symbol17

Semantics18

An undef-statement is evaluated as follows:19

a) For each method-name-or-symbol of the undef-list, take the following steps:20

1) Let C be the current class or module.21

2) If the method-name-or-symbol is of the form defined-method-name, let N be the defined-22

method-name. Otherwise, evaluate the symbol. Let N be the name of the resulting23

instance of the class Symbol.24

3) Search for a method binding with name N, starting from C as described in 13.3.4.25

4) If a binding is found and its value is not undef:26

i) If the binding is found in C, replace the value of the binding with undef.27

ii) Otherwise, create a method binding with name N and value undef in the set of28

bindings of instance methods of C.29

5) Otherwise, let S be a direct instance of the class Symbol with name N and raise a30

direct instance of the class NameError which has S as its name attribute.31

122

b) The value of the undef-statement is nil.1

13.4 Singleton classes2

13.4.1 General description3

A singleton class is an object which is associated with another object. A singleton class modifies4

the behavior of an object when associated with it. When such an association is made, the5

singleton class is called the singleton class of the object, and the object is called the primary6

associated object of the singleton class.7

An object has at most one singleton class. When an object is created, it shall not be associated8

with any singleton classes unless the object is an instance of the class Class. Singleton classes9

are associated with an object by evaluation of a program construct such as a singleton-method-10

definition or a singleton-class-definition. However, when an instance of the class Class is created,11

it shall already have been associated with its singleton class.12

Normally, a singleton class shall be associated with only its primary associated object; however,13

the singleton class of an instance of the class Class may be associated with some additional14

instances of the class Class which are not the primary associated objects of any other singleton15

classes, in an implementation-defined way. Once associated, the primary associated object of16

a singleton class shall not be dissociated from its singleton class; however the aforementioned17

additional associated instances of the class Class are dissociated from their singleton class when18

they become the primary associated object of another singleton class [see 13.4.2 e) and 13.4.319

e)].20

Every singleton class is an instance of the class Class (see 15.2.3), and has the same set of21

attributes as classes.22

The direct superclass of a singleton class is implementation-defined. However, a singleton class23

shall be a subclass of the class of the object with which it is associated.24

NOTE 1 For example, the singleton class of the class Object is a subclass of the class Class because25

the class Object is a direct instance of the class Class. Therefore, the instance methods of the class26

Class can be invoked on the class Object.27

The singleton class of a class which has a direct superclass shall satisfy the following condition:28

� Let Ec be the singleton class of a class C, and let S be the direct superclass of C, and let29

Es be the singleton class of S. Then, Ec have Es as one of its superclasses.30

NOTE 2 This requirement enables classes to inherit singleton methods from its superclasses. For exam-31

ple, the singleton class of the class File has the singleton class of the class IO as its superclass. Thereby,32

the class File inherits the singleton method open of the class IO.33

Although singleton classes are instances of the class Class, they cannot create an instance of34

themselves. When the method new is invoked on a singleton class, a direct instance of the class35

TypeError shall be raised [see 15.2.3.3.3 a)].36

Whether a singleton class can be a superclass of other classes is unspecified [see 13.2.2 b) 2) i)37

and 15.2.3.3.1 c)].38

Whether a singleton class can have class variables or not is implementation-defined.39

123

13.4.2 Singleton class definition1

Syntax2

singleton-class-definition ::3

class << expression separator singleton-class-body end4

singleton-class-body ::5

body-statement6

Semantics7

A singleton-class-definition is evaluated as follows:8

a) Evaluate the expression. Let O be the resulting value. If O is an instance of the class9

Integer or the class Symbol, a direct instance of the class TypeError may be raised.10

b) If O is one of nil, true, or false, let E be the class of O and go to Step f).11

c) If O is not associated with a singleton class, create a new singleton class. Let E be the12

newly created singleton class, and associate O with E as its primary associated object.13

d) If O is associated with a singleton class as its primary associated object, let E be that14

singleton class.15

e) If O is associated with a singleton class not as its primary associated object, dissociate16

O from the singleton class, and create a new singleton class. Let E be the newly created17

singleton class, and associate O with E as its primary associated object.18

f) Modify the execution context as follows:19

1) Create a new list which consists of the same elements as the list at the top of [class-20

module-list] and add E to the head of the newly created list. Push the list onto21

[class-module-list] .22

2) Push E onto [self] .23

3) Push the public visibility onto [default-method-visibility] .24

4) Push an empty set of bindings onto [local-variable-bindings] .25

g) Evaluate the singleton-class-body. The value of the singleton-class-definition is the value of26

the singleton-class-body.27

h) Restore the execution context by removing the elements from the tops of [class-module-list] ,28

[self] , [default-method-visibility] , and [local-variable-bindings] .29

13.4.3 Singleton method definition30

Syntax31

124

singleton-method-definition ::1

def singleton (. | ::) defined-method-name [no line-terminator here]2

method-parameter-part method-body end3

singleton ::4

variable-reference5

| (expression)6

Semantics7

A singleton-method-definition is evaluated as follows:8

a) Evaluate the singleton. Let S be the resulting value. If S is an instance of the class Integer9

or the class Symbol, a direct instance of the class TypeError may be raised.10

b) If S is one of nil, true, or false, let E be the class of O and go to Step f).11

c) If S is not associated with a singleton class, create a new singleton class. Let E be the12

newly created singleton class, and associate S with E as its primary associated object.13

d) If S is associated with a singleton class as its primary associated object, let E be that14

singleton class.15

e) If S is associated with a singleton class not as its primary associated object, dissociate S16

from the singleton class, and create a new singleton class. Let E be the newly created17

singleton class, and associate S with E as its primary associated object.18

f) Let N be the defined-method-name.19

g) Create a method U defined by the singleton-method-definition. U has the method-parameter-20

part and the method-body of the singleton-method-definition as described in 13.3.1. Initialize21

the attributes of U as follows:22

� The class module list is the element at the top of [class-module-list] .23

� The defined name is N.24

� The visibility is the public visibility.25

h) If a method binding with name N exists in the set of bindings of instance methods of E,26

let V be the value of that binding.27

1) If V is undef, the evaluation of the singleton-method-definition is implementation-28

defined.29

2) Replace the value of the binding with U.30

i) Otherwise, create a method binding with name N and value U in the set of bindings of31

instance methods of E.32

125

j) The value of the singleton-method-definition is implementation-defined.1

14 Exceptions2

14.1 General description3

If an instance of the class Exception is raised, the current evaluation process stops, and control4

is transferred to a program construct that can handle this exception.5

14.2 Cause of exceptions6

An exception is raised when:7

� the method raise (see 15.3.1.2.12) is invoked.8

� an exceptional condition occurs as described in various parts of this document.9

Only instances of the class Exception shall be raised.10

14.3 Exception handling11

Exceptions are handled by a body-statement, an assignment-with-rescue-modifier, or a rescue-12

modifier-statement. These program constructs are called exception handlers. When an ex-13

ception handler is handling an exception, the exception being handled is called the current14

exception.15

When an exception is raised, it is handled by an exception handler. This exception handler is16

determined as follows:17

a) Let S be the innermost local variable scope which lexically encloses the location where18

the exception is raised, and which corresponds to one of a program, a method-definition, a19

singleton-method-definition, or a block.20

b) Test each exception handler in S which lexically encloses the location where the exception21

is raised from the innermost to the outermost.22

� An assignment-with-rescue-modifier is considered to handle the exception if the excep-23

tion is an instance of the class StandardError (see 11.4.2.5), except when the exception24

is raised in its operator-expression2. In this case, assignment-with-rescue-modifier does25

not handle the exception.26

� A rescue-modifier-statement is considered to handle the exception if the exception is27

an instance of the class StandardError (see 12.7), except when the exception is raised28

in its fallback-statement-of-rescue-modifier-statement. In this case, rescue-modifier-29

statement does not handle the exception.30

� A body-statement is considered to handle the exception if one of its rescue-clauses is31

considered to handle the exception (see 11.5.2.5), except when the exception is raised32

in one of its rescue-clauses, else-clause, or ensure-clause. In this case, body-statement33

does not handle the exception. If an ensure-clause of a body-statement is present, it is34

evaluated even if the handler does not handle the exception (see 11.5.2.5).35

126

c) If an exception handler which can handle the exception is found in S, terminate the search1

for the exception handler. Continue evaluating the program as defined for the relevant2

construct (see 11.4.2.5, 11.5.2.5, and 12.7).3

d) If none of the exception handlers in S can handle the exception:4

1) If S corresponds to a method-definition or a singleton-method-definition, terminate Step5

h) or Step i) of 13.3.3, and take Step j) of the current method invocation (see 13.3.3).6

Continue the search from Step a), under the assumption that the exception is raised7

at the location where the method is invoked.8

2) If S corresponds to a block, terminate the evaluation of the current block, and take9

Step f) of 11.3.3. Continue the search from Step a), under the assumption that the10

exception is raised at the location where the block is called.11

3) If S corresponds to a program, terminate the evaluation of the program, take Step d)12

of 10.1, and print the information of the exception in an implementation-defined way.13

15 Built-in classes and modules14

15.1 General description15

Built-in classes and modules are classes and modules which are already created before execution16

of a program (see 7.2).17

Built-in classes and modules are respectively specified in 15.2 and 15.3. A built-in class or18

module is specified by describing the following attributes (see 13.1.1 and 13.2.1):19

� The direct superclass (for built-in classes only).20

� The include module list.21

� Constants.22

� Singleton methods, i.e. instance methods of the singleton class of the built-in class or23

module. The class module list of a singleton method of the built-in class or module consists24

of two elements: the first is the singleton class of the built-in class or module; the second is25

the class Object.26

� Instance methods. The class module list (see 13.3.1) of an instance method of the built-in27

class or module consists of two elements: the first is the built-in class or module; the second28

is the class Object.29

The set of bindings of class variables of a built-in class or module is an empty set.30

NOTE A built-in class or module is not created by a class-definition or module-definition in a program31

text, but is created as a class or module whose attributes are described in 15.2 or 15.3 in advance prior32

to an execution of a program.33

A conforming processor may provide the following additional attributes and/or values.34

127

� A specific initial value for an attribute defined in this document whose initial value is not1

specified in this document;2

� Constants, singleton methods, instance methods;3

� Additional optional parameters or array parameters for methods specified in this document;4

� Additional inclusion of modules into built-in classes/modules.5

In 15.2 and 15.3, the following notations are used:6

� Each subclause of 15.2 and 15.3 (e.g., 15.2.1) specifies a built-in class or module. The title7

of the subclause is the name of the built-in class or module. The name is used as the name8

of a constant binding in the class Object (see 15.2.1.4).9

� A built-in class except the class Object (see 15.2.1) has, as its direct superclass, the class10

described in the subclause titled “Direct superclass” in the subclause specifying the built-in11

class.12

� When a subclause specifying a built-in class or module contains a subclause titled “Included13

modules”, the built-in class or module includes (see 13.1.3) the modules listed in that14

subclause in the order of that listing.15

� Each subclause in a subclause titled “Singleton methods” with a title of the form C.m16

specifies the singleton method m of the class C.17

� Each subclause in a subclause titled “Instance methods” with a title of the form C#m18

specifies the instance method m of the class C.19

� The parameter specification of a method is described in the form of method-parameter-part20

(see 13.3.2).21

EXAMPLE 1 The following example defines the parameter specification of a method sample.22

sample(arg1, arg2, opt =expr, *ary, &blk)23

� A singleton method name is prefixed by the name of the class or the module, and a dot (.).24

EXAMPLE 2 The following example defines the parameter specification of a singleton method25

sample of a class SampleClass:26

SampleClass.sample(arg1, arg2, opt =expr, *ary, &blk)27

� Next to the parameter specification, the visibility and the behavior of the method are28

specified.29

The visibility, which is any one of public, protected, or private, is specified after the label30

named “Visibility:”.31

The behavior, which is the steps which shall be taken while evaluating the method-body of32

the method [see 13.3.3 i)], is specified after the label named “Behavior:”.33

128

In these steps, a reference to the name of an argument in the parameter specification is1

considered to be the object bound to the local variables of the same name.2

� The phrase “call block with X as the argument” indicates that the block corresponding to3

the proc parameter block is called as described in 11.3.3 with X as the argument to the4

block call.5

� The phrase “return X ” indicates that the evaluation of the method-body is terminated at6

that point, and X is the value of the method-body.7

� The phrase “the name designated by N ” means the result of the following steps:8

a) If N is an instance of the class Symbol, the name of N.9

b) If N is an instance of the class String, the content (see 15.2.10.1) of N.10

c) Otherwise, the behavior of the method is unspecified.11

15.2 Built-in classes12

15.2.1 Object13

15.2.1.1 General description14

The class Object is an implicit direct superclass for other classes. That is, if the direct superclass15

of a class is not specified explicitly in the class definition, the direct superclass of the class is16

the class Object (see 13.2.2).17

All built-in classes and modules can be referred to through constants of the class Object (see18

15.2.1.4).19

15.2.1.2 Direct superclass20

The class Object does not have a direct superclass, or may have an implementation-defined21

superclass.22

15.2.1.3 Included modules23

The following module is included in the class Object.24

� Kernel25

15.2.1.4 Constants26

The following constants are defined in the class Object.27

STDIN: An implementation-defined readable instance of the class IO, which is used for28

reading conventional input.29

STDOUT: An implementation-defined writable instance of the class IO, which is used for30

writing conventional output.31

129

STDERR: An implementation-defined writable instance of the class IO, which is used for1

writing diagnostic output.2

Other than these constants, for each built-in class or module, including the class Object itself,3

a conforming processor shall define a constant in the class Object, whose name is the name of4

the class or module, and whose value is the class or module itself.5

15.2.1.5 Instance methods6

15.2.1.5.1 Object#initialize7

initialize(*args)8

Visibility: private9

Behavior: The method initialize is the default object initialization method, which is10

invoked when an instance is created (see 13.2.4). It returns an implementation-defined11

value.12

If the class Object is not the root of the class inheritance tree, the method initialize shall be13

defined in the class which is the root of the class inheritance tree instead of in the class Object.14

15.2.2 Module15

15.2.2.1 General description16

All modules are instances of the class Module. Therefore, behaviors defined in the class Module17

are shared by all modules.18

The binary relation on the instances of the class Module denoted A @ B is defined as follows:19

� B is a module, and B is included in A (see 13.1.3) or20

� Both A and B are instances of the class Class, and B is a superclass of A.21

15.2.2.2 Direct superclass22

The class Object23

15.2.2.3 Singleton methods24

15.2.2.3.1 Module.constants25

Module.constants26

Visibility: public27

Behavior:28

130

a) Create an empty direct instance of the class Array. Let A be the instance.1

b) Let C be the current class or module. Let L be the list which consists of the same2

elements as the list at the second element from the top of [class-module-list] , except3

the last element, which is the class Object.4

Let CS be the set of classes which consists of C and all the superclasses of C except5

the class Object, but when C is the class Object, it shall be included in CS. Let MS6

be the set of modules which consists of all the modules in the included module list of7

all classes in CS. Let CM be the union of L, CS and MS.8

c) For each class or module c in CM, and for each name N of a constant defined in c,9

take the following steps:10

1) Let S be either a new direct instance of the class String whose content is N or a11

direct instance of the class Symbol whose name is N. Which is chosen as the value12

of S is implementation-defined.13

2) Unless A contains the element of the same name as S, when S is an instance of the14

class Symbol, or the same content as S, when S is an instance of the class String,15

insert S to A. The position where S is inserted is implementation-defined.16

d) Return A.17

15.2.2.3.2 Module.nesting18

Module.nesting19

Visibility: public20

Behavior: The method returns a new direct instance of the class Array which contains all21

but the last element of the list at the second element from the top of the [class-module-list]22

in the same order.23

15.2.2.4 Instance methods24

15.2.2.4.1 Module#<25

<(other)26

Visibility: public27

Behavior: Let A be other . Let R be the receiver of the method.28

a) If A is not an instance of the class Module, raise a direct instance of the class TypeError.29

b) If A and R are the same object, return false.30

c) If R @ A, return true.31

131

d) If A @ R, return false.1

e) Otherwise, return nil.2

15.2.2.4.2 Module#<=3

< =(other)4

Visibility: public5

Behavior:6

a) If other and the receiver are the same object, return true.7

b) Otherwise, the behavior is the same as the method < (see 15.2.2.4.1).8

15.2.2.4.3 Module#<=>9

< =>(other)10

Visibility: public11

Behavior: Let A be other . Let R be the receiver of the method.12

a) If A is not an instance of the class Module, return nil.13

b) If A and R are the same object, return an instance of the class Integer whose value14

is 0.15

c) If R @ A, return an instance of the class Integer whose value is −1.16

d) If A @ R, return an instance of the class Integer whose value is 1.17

e) Otherwise, return nil.18

15.2.2.4.4 Module#==19

= =(other)20

Visibility: public21

Behavior: Same as the method == of the module Kernel (see 15.3.1.3.1).22

15.2.2.4.5 Module#===23

132

= = =(object)1

Visibility: public2

Behavior: Invoke the method kind of? (see 15.3.1.3.26) of the module Kernel on object3

with the receiver as the only argument, and return the resulting value.4

15.2.2.4.6 Module#>5

>(other)6

Visibility: public7

Behavior: Let A be other . Let R be the receiver of the method.8

a) If A is not an instance of the class Module, raise a direct instance of the class TypeError.9

b) If A and R are the same object, return false.10

c) If R @ A, return false.11

d) If A @ R, return true.12

e) Otherwise, return nil.13

15.2.2.4.7 Module#>=14

> =(other)15

Visibility: public16

Behavior:17

a) If other and the receiver are the same object, return true.18

b) Otherwise, the behavior is the same as the method > (see 15.2.2.4.6).19

15.2.2.4.8 Module#alias method20

alias method(new name, aliased name)21

Visibility: private22

Behavior: Let C be the receiver of the method.23

133

a) Let N be the name designated by new name. Let A be the name designated by1

aliased name.2

b) Take steps d) through h) of 13.3.6, assuming that A, C, and N in 13.3.6 to be A, C,3

and N in the above steps.4

c) Return C.5

15.2.2.4.9 Module#ancestors6

ancestors7

Visibility: public8

Behavior:9

a) Create an empty direct instance A of the class Array.10

b) Let C be the receiver of the method.11

c) If C is a singleton class, the behavior is implementation-defined.12

d) Otherwise, append C to the end of A.13

e) Append each element of the included module list of C to A in the reverse order.14

f) If C has a direct superclass, let new C be the direct superclass of the current C, and15

repeat from Step c).16

g) Return A.17

15.2.2.4.10 Module#append features18

append features(module)19

Visibility: private20

Behavior: Let L1 and L2 be the included module list of the receiver and module respec-21

tively.22

a) If module and the receiver are the same object, the behavior is unspecified.23

b) If the receiver is an element of L2, the behavior is implementation-defined.24

c) Otherwise, for each module M in L1, in the same order in L1, take the following steps:25

1) If M and module are the same object, the behavior is unspecified.26

2) If M is not in L2, append M to the end of L2.27

134

d) Append the receiver to L2.1

e) Return an implementation-defined value.2

15.2.2.4.11 Module#attr3

attr(name)4

Visibility: private5

Behavior: Invoke the method attr reader of the class Module (see 15.2.2.4.13) on the6

receiver with name as the only argument, and return the resulting value.7

15.2.2.4.12 Module#attr accessor8

attr accessor(*name list)9

Visibility: private10

Behavior:11

Let C be the method receiver.12

a) For each element E of name list , take the following steps:13

1) Let N be the name designated by E.14

2) If N is not of the form local-variable-identifier or constant-identifier, raise a direct15

instance of the class NameError which has E as its name attribute.16

3) Define an instance method in C as if by evaluating the following method definition17

at the location of the invocation. In the following method definition, N is N, and18

@N is the name which is N prefixed by “@”.19

def N20

@N21

end22

23

4) Define an instance method in C as if by evaluating the following method definition24

at the location of the invocation. In the following method definition, N= is the name25

N postfixed by =, and @N is the name which is N prefixed by “@”. The choice of the26

parameter name is arbitrary, and val is chosen only for the expository purpose.27

def N=(val)28

@N = val29

end30

31

b) Return an implementation-defined value.32

135

15.2.2.4.13 Module#attr reader1

attr reader(*name list)2

Visibility: private3

Behavior: The method takes the same steps as the method attr accessor [see 15.2.2.4.12,4

except Step a) 4)] of the class Module.5

15.2.2.4.14 Module#attr writer6

attr writer(*name list)7

Visibility: private8

Behavior: The method takes the same steps as the method attr accessor of the class9

Module (see 15.2.2.4.12), except Step a) 3).10

15.2.2.4.15 Module#class eval11

class eval(string =nil, &block)12

Visibility: public13

Behavior:14

a) Let M be the receiver.15

b) If block is given:16

1) If string is given, raise a direct instance of the class ArgumentError.17

2) Call block with implementation-defined arguments as described in 11.3.3, and let V18

be the resulting value. A conforming processor shall modify the execution context19

just before 11.3.3 d) as follows:20

� Create a new list which has the same members as those of the list at the top21

of [class-module-list] , and add M to the head of the newly created list. Push22

the list onto [class-module-list] .23

� Push the receiver onto [self] .24

� Push the public visibility onto [default-method-visibility] .25

In 11.3.3 d) and e), a conforming processor shall ignore M which is added to the26

head of the top of [class-module-list] as described above, except when referring to27

the current class or module in a method-definition (see 13.3.1), an alias-statement28

(see 13.3.6), or an undef-statement (see 13.3.7).29

136

3) Return V.1

c) If block is not given:2

1) If string is not an instance of the class String, the behavior is unspecified.3

2) Let E be the execution context as it exists just before this method invoked.4

3) Modify E as follows:5

� Create a new list which has the same members as those of the list at the top6

of [class-module-list] , and add M to the head of the newly created list. Push7

the list onto [class-module-list] .8

� Push the receiver onto [self] .9

� Push the public visibility onto [default-method-visibility] .10

4) Parse the content of string as a program (see 10.1). If it fails, raise a direct instance11

of the class SyntaxError.12

5) Evaluate the program within the execution context E. Let V be the resulting value13

of the evaluation.14

6) Restore the execution context E by removing the elements from the tops of [class-15

module-list] , [self] , and [default-method-visibility] , even when an exception is16

raised and not handled in c) 4) or c) 5).17

7) Return V.18

In Step c) 5), a local variable scope which corresponds to the program is considered as a19

local variable scope which corresponds to a block in 9.2 d) 1).20

15.2.2.4.16 Module#class variable defined?21

class variable defined?(symbol)22

Visibility: public23

Behavior: Let C be the receiver of the method.24

a) Let N be the name designated by symbol .25

b) If N is not of the form class-variable-identifier, raise a direct instance of the class26

NameError which has symbol as its name attribute.27

c) Search for a binding of the class variable with name N by taking steps b) through d)28

of 11.5.4.5, assuming that C and N in 11.5.4.5 to be C and N in the above steps.29

d) If a binding is found, return true.30

e) Otherwise, return false.31

137

15.2.2.4.17 Module#class variable get1

class variable get(symbol)2

Visibility: implementation-defined3

Behavior: Let C be the receiver of the method.4

a) Let N be the name designated by symbol .5

b) If N is not of the form class-variable-identifier, raise a direct instance of the class6

NameError which has symbol as its name attribute.7

c) Search for a binding of the class variable with name N by taking steps b) through d)8

of 11.5.4.5, assuming that C and N in 11.5.4.5 to be C and N in the above steps.9

d) If a binding is found, return the value of the binding.10

e) Otherwise, raise a direct instance of the class NameError which has symbol as its name11

attribute.12

15.2.2.4.18 Module#class variable set13

class variable set(symbol, obj)14

Visibility: implementation-defined15

Behavior: Let C be the receiver of the method.16

a) Let N be the name designated by symbol .17

b) If N is not of the form class-variable-identifier, raise a direct instance of the class18

NameError which has symbol as its name attribute.19

c) Search for a binding of the class variable with name N by taking steps b) through d)20

of 11.5.4.5, assuming that C and N in 11.5.4.5 to be C and N in the above steps.21

d) If a binding is found, replace the value of the binding with obj .22

e) Otherwise, create a variable binding with name N and value obj in the set of bindings23

of class variables of C.24

f) Return obj .25

15.2.2.4.19 Module#class variables26

138

class variables1

Visibility: public2

Behavior: The method returns a new direct instance of the class Array which consists3

of names of all class variables of the receiver. These names are represented by direct4

instances of either the class String or the class Symbol. Which of those classes is chosen is5

implementation-defined.6

15.2.2.4.20 Module#const defined?7

const defined?(symbol)8

Visibility: public9

Behavior:10

a) Let C be the receiver of the method.11

b) Let N be the name designated by symbol .12

c) If N is not of the form constant-identifier, raise a direct instance of the class NameError13

which has symbol as its name attribute.14

d) If a binding with name N exists in the set of bindings of constants of C, return true.15

e) Otherwise, return false.16

15.2.2.4.21 Module#const get17

const get(symbol)18

Visibility: public19

Behavior:20

a) Let N be the name designated by symbol .21

b) If N is not of the form constant-identifier, raise a direct instance of the class NameError22

which has symbol as its name attribute.23

c) Search for a binding of a constant with name N from Step e) of 11.5.4.2, assuming that24

C in 11.5.4.2 to be the receiver of the method.25

d) If a binding is found, return the value of the binding.26

e) Otherwise, return the value of the invocation of the method const missing [see 11.5.4.227

e) 1) i)].28

139

15.2.2.4.22 Module#const missing1

const missing(symbol)2

Visibility: public3

Behavior: The method const missing is invoked when a binding of a constant does not4

exist on a constant reference (see 11.5.4.2).5

When the method is invoked, take the following steps:6

a) Take steps a) through c) of 15.2.2.4.20.7

b) Raise a direct instance of the class NameError which has symbol as its name attribute.8

15.2.2.4.23 Module#const set9

const set(symbol, obj)10

Visibility: public11

Behavior: Let C be the receiver of the method.12

a) Let N be the name designated by symbol .13

b) If N is not of the form constant-identifier, raise a direct instance of the class NameError14

which has symbol as its name attribute.15

c) If a binding with name N exists in the set of bindings of constants of C, replace the16

value of the binding with obj .17

d) Otherwise, create a variable binding with N and value obj in the set of bindings of18

constants of C.19

e) Return obj .20

15.2.2.4.24 Module#constants21

constants22

Visibility: public23

Behavior:24

The method returns a new direct instance of the class Array which consists of names of all25

constants defined in the receiver. These names are represented by direct instances of either26

the class String or the class Symbol. Which of those classes is chosen is implementation-27

defined.28

140

15.2.2.4.25 Module#extend object1

extend object(object)2

Visibility: private3

Behavior: Let S be the singleton class of object . Invoke the method append features (see4

15.2.2.4.10) on the receiver with S as the only argument, and return the resulting value.5

15.2.2.4.26 Module#extended6

extended(object)7

Visibility: private8

Behavior: The method returns nil.9

NOTE The method extended is invoked in the method extend of the module Kernel (see 15.3.1.3.13).10

The method extended can be overriden to hook an invocation of the method extend.11

15.2.2.4.27 Module#include12

include(*module list)13

Visibility: private14

Behavior: Let C be the receiver of the method.15

a) For each element A of module list , in the reverse order in module list , take the following16

steps:17

1) If A is not an instance of the class Module, raise a direct instance of the class18

TypeError.19

2) If A is an instance of the class Class, raise a direct instance of the class TypeError.20

3) Invoke the method append features (see 15.2.2.4.10) on A with C as the only21

argument.22

4) Invoke the method included (see 15.2.2.4.29) on A with C as the only argument.23

b) Return C.24

15.2.2.4.28 Module#include?25

141

include?(module)1

Visibility: public2

Behavior: Let C be the receiver of the method.3

a) If module is not an instance of the class Module, raise a direct instance of the class4

TypeError.5

b) If module is an element of the included module list of C, return true.6

c) Otherwise, if C is an instance of the class Class, and if module is an element of the7

included module list of one of the superclasses of C, then return true.8

d) Otherwise, return false.9

15.2.2.4.29 Module#included10

included(module)11

Visibility: private12

Behavior: The method returns nil.13

NOTE The method included is invoked in the method include of the class Module (see 15.2.2.4.27).14

The method included can be overriden to hook an invocation of the method include.15

15.2.2.4.30 Module#included modules16

included modules17

Visibility: public18

Behavior: Let C be the receiver of the method.19

a) Create an empty direct instance A of the class Array.20

b) Append each element of the included module list of C, in the reverse order, to A.21

c) If C is an instance of the class Class, and if C has a direct superclass, then let new C22

be the direct superclass of the current C, and repeat from Step b).23

d) Otherwise, return A.24

15.2.2.4.31 Module#initialize25

142

initialize(&block)1

Visibility: private2

Behavior:3

a) If block is given, take step b) of the method class eval of the class Module (see4

15.2.2.4.15), assuming that block in 15.2.2.4.15 to be block given to this method.5

b) Return an implementation-defined value.6

15.2.2.4.32 Module#initialize copy7

initialize copy(original)8

Visibility: private9

Behavior:10

a) Invoke the instance method initialize copy defined in the module Kernel on the11

receiver with original as the argument.12

b) If the receiver is associated with a singleton class, let Eo be the singleton class, and13

take the following steps:14

1) Create a singleton class whose direct superclass is the direct superclass of Eo. Let15

En be the singleton class.16

2) For each binding Bv1 of the constants of Eo, create a variable binding with the17

same name and value as Bv1 in the set of bindings of constants of En.18

3) For each binding Bv2 of the class variables of Eo, create a variable binding with19

the same name and value as Bv2 in the set of bindings of class variables of En.20

4) For each binding Bm of the instance methods of Eo, create a method binding with21

the same name and value as Bm in the set of bindings of instance methods of En.22

5) Associate the receiver with En.23

c) If the receiver is an instance of the class Class:24

1) If original has a direct superclass, set the direct superclass of the receiver to the25

direct superclass of original .26

2) Otherwise, the behavior is unspecified.27

d) Append each element of the included module list of original , in the same order, to the28

included module list of the receiver.29

143

e) For each binding Bv3 of the constants of original , create a variable binding with the1

same name and value as Bv3 in the set of bindings of constants of the receiver.2

f) For each binding Bv4 of the class variables of original , create a variable binding with3

the same name and value as Bv4 in the set of bindings of class variables of the receiver.4

g) For each binding Bm2 of the instance methods of original , create a method binding5

with the same name and value as Bm2 in the set of bindings of instance methods of the6

receiver.7

h) Return an implementation-defined value.8

15.2.2.4.33 Module#instance methods9

instance methods(include super =true)10

Visibility: public11

Behavior: Let C be the receiver of the method.12

a) Create an empty direct instance A of the class Array.13

b) Let I be the set of bindings of instance methods of C. For each binding B of I, let N14

be the name of B, and let V be the value of B, and take the following steps:15

1) If V is undef, or the visibility of V is private, skip the next two steps.16

2) Let S be either a new direct instance of the class String whose content is N or a17

direct instance of the class Symbol whose name is N. Which is chosen as the value18

of S is implementation-defined.19

3) Unless A contains the element of the same name (if S is an instance of the class20

Symbol) or the same content (if S is an instance of the class String) as S, append21

S to A.22

c) If include super is a trueish object:23

1) For each module M in included module list of C, take step b), assuming that C24

in that step to be M.25

2) If C does not have a direct superclass, return A.26

3) Let new C be the direct superclass of C.27

4) Repeat from Step b).28

d) Return A.29

15.2.2.4.34 Module#method defined?30

144

method defined?(symbol)1

Visibility: public2

Behavior: Let C be the receiver of the method.3

a) Let N be the name designated by symbol .4

b) Search for a binding of an instance method named N starting from C as described in5

13.3.4.6

c) If a binding is found and its value is not undef, return true.7

d) Otherwise, return false.8

15.2.2.4.35 Module#module eval9

module eval(string =nil, &block)10

Visibility: public11

Behavior: Same as the method class eval (see 15.2.2.4.15).12

15.2.2.4.36 Module#private13

private(*symbol list)14

Visibility: private15

Behavior: Same as the method public (see 15.2.2.4.38), except to let NV be the private16

visibility in 15.2.2.4.38 a).17

15.2.2.4.37 Module#protected18

protected(*symbol list)19

Visibility: private20

Behavior: Same as the method public (see 15.2.2.4.38), except to let NV be the protected21

visibility in 15.2.2.4.38 a).22

15.2.2.4.38 Module#public23

145

public(*symbol list)1

Visibility: private2

Behavior: Let C be the receiver of the method.3

a) Let NV be the public visibility.4

b) If the length of symbol list is 0, change the current visibility to NV and return C.5

c) Otherwise, for each element S of symbol list , take the following steps:6

1) Let N be the name designated by S.7

2) Search for a method binding with name N starting from C as described in 13.3.4.8

3) If a binding is found and its value is not undef, let V the value of the binding.9

4) Otherwise, raise a direct instance of the class NameError which has S as its name10

attribute.11

5) If C is the class or module in which the binding is found, change the visibility of12

V to NV.13

6) Otherwise, define an instance method in C as if by evaluating the following method14

definition. In the definition, N is N. The choice of the parameter name is arbitrary,15

and args is chosen only for the expository purpose.16

def N(*args)17

super18

end19

20

The attributes of the method created by the above definition are initialized as21

follows:22

i) The class module list is the element at the top of [class-module-list] .23

ii) The defined name is the defined name of V.24

iii) The visibility is NV.25

d) Return C.26

15.2.2.4.39 Module#remove class variable27

remove class variable(symbol)28

146

Visibility: implementation-defined1

Behavior: Let C be the receiver of the method.2

a) Let N be the name designated by symbol .3

b) If N is not of the form class-variable-identifier, raise a direct instance of the class4

NameError which has symbol as its name attribute.5

c) If a binding with name N exists in the set of bindings of class variables of C, let V be6

the value of the binding.7

1) Remove the binding from the set of bindings of class variables of C.8

2) Return V.9

d) Otherwise, raise a direct instance of the class NameError which has symbol as its name10

attribute.11

15.2.2.4.40 Module#remove const12

remove const(symbol)13

Visibility: private14

Behavior: Let C be the receiver of the method.15

a) Let N be the name designated by symbol .16

b) If N is not of the form constant-identifier, raise a direct instance of the class NameError17

which has symbol as its name attribute.18

c) If a binding with name N exists in the set of bindings of constants of C, let V be the19

value of the binding.20

1) Remove the binding from the set of bindings of constants of C.21

2) Return V.22

d) Otherwise, raise a direct instance of the class NameError which has symbol as its name23

attribute.24

15.2.2.4.41 Module#remove method25

remove method(*symbol list)26

Visibility: private27

Behavior: Let C be the receiver of the method.28

147

a) For each element S of symbol list , in the order in the list, take the following steps:1

1) Let N be the name designated by S.2

2) If a binding with name N exists in the set of bindings of instance methods of C,3

and if the value of the binding is not undef, then remove the binding from the set.4

3) Otherwise, raise a direct instance of the class NameError which has S as its name5

attribute. In this case, the remaining elements of symbol list are not processed.6

b) Return C.7

15.2.2.4.42 Module#undef method8

undef method(*symbol list)9

Visibility: private10

Behavior: Let C be the receiver of the method.11

a) For each element S of symbol list , in the order in the list, take the following steps:12

1) Let N be the name designated by S.13

2) Take steps a) 3) and a) 4) of 13.3.7, assuming that C and N in 13.3.7 to be C and14

N in the above steps, respectively.15

b) Return C.16

15.2.3 Class17

15.2.3.1 General description18

All classes are instances of the class Class. Therefore, behaviors defined in the class Class are19

shared by all classes.20

The instance methods append features and extend object of the class Class shall be unde-21

fined by invoking the method undef method (see 15.2.2.4.42) on the class Class with instances22

of the class Symbol whoses names are “append features” and “extend object” as the arguments.23

NOTE The instance methods append features and extend object are methods for modules. These24

methods are therefore undefined in the class Class, whose instances do not represent modules, but classes.25

15.2.3.2 Direct superclass26

The class Module27

15.2.3.3 Instance methods28

15.2.3.3.1 Class#initialize29

148

initialize(superclass =Object, &block)1

Visibility: private2

Behavior:3

a) If the receiver has its direct superclass, or is the root of the class inheritance tree, then4

raise a direct instance of the class TypeError.5

b) If superclass is not an instance of the class Class, raise a direct instance of the class6

TypeError.7

c) If superclass is a singleton class or the class Class, the behavior is unspecified.8

d) Set the direct superclass of the receiver to superclass.9

e) Create a singleton class, and associate it with the receiver. The singleton class shall10

have the singleton class of superclass as one of its superclasses.11

f) If block is given, take step b) of the method class eval of the class Module (see12

15.2.2.4.15), assuming that block in 15.2.2.4.15 to be block given to this method.13

g) Return an implementation-defined value.14

15.2.3.3.2 Class#initialize copy15

initialize copy(original)16

Visibility: private17

Behavior:18

a) If the direct superclass of the receiver has already been set, or if the receiver is the root19

of the class inheritance tree, then raise a direct instance of the class TypeError.20

b) If the receiver is a singleton class, raise a direct instance of the class TypeError.21

c) Invoke the instance method initialize copy defined in the class Module on the re-22

ceiver with original as the argument.23

d) Return an implementation-defined value.24

15.2.3.3.3 Class#new25

new(*args, &block)26

Visibility: public27

149

Behavior:1

a) If the receiver is a singleton class, raise a direct instance of the class TypeError.2

b) Create a direct instance of the receiver which has no bindings of instance variables.3

Let O be the newly created instance.4

c) Invoke the method initialize on O with all the elements of args as arguments and5

block as the block.6

d) Return O.7

15.2.3.3.4 Class#superclass8

superclass9

Visibility: public10

Behavior: Let C be the receiver of the method.11

a) If C is a singleton class, return an implementation-defined value.12

b) If C does not have a direct superclass, return nil.13

c) Otherwise, return the direct superclass of C.14

15.2.4 NilClass15

15.2.4.1 General description16

The class NilClass has only one instance nil (see 6.6).17

Instances of the class NilClass shall not be created by the method new of the class NilClass.18

Therefore, the singleton method new of the class NilClass shall be undefined, by invoking the19

method undef method (see 15.2.2.4.42) on the singleton class of the class NilClass with a direct20

instance of the class Symbol whose name is “new” as the argument.21

15.2.4.2 Direct superclass22

The class Object23

15.2.4.3 Instance methods24

15.2.4.3.1 NilClass#&25

&(other)26

Visibility: public27

Behavior: The method returns false.28

150

15.2.4.3.2 NilClass#ˆ1

^(other)2

Visibility: public3

Behavior:4

a) If other is a falseish object, return false.5

b) Otherwise, return true.6

15.2.4.3.3 NilClass#|7

|(other)8

Visibility: public9

Behavior:10

a) If other is a falseish object, return false.11

b) Otherwise, return true.12

15.2.4.3.4 NilClass#nil?13

nil?14

Visibility: public15

Behavior: The method returns true.16

15.2.4.3.5 NilClass#to s17

to s18

Visibility: public19

Behavior: The method creates an empty direct instance of the class String, and returns20

this instance.21

15.2.5 TrueClass22

15.2.5.1 General description23

The class TrueClass has only one instance true (see 6.6).24

151

Instances of the class TrueClass shall not be created by the method new of the class TrueClass.1

Therefore, the singleton method new of the class TrueClass shall be undefined, by invoking the2

method undef method (see 15.2.2.4.42) on the singleton class of the class TrueClass with a3

direct instance of the class Symbol whose name is “new” as the argument.4

15.2.5.2 Direct superclass5

The class Object6

15.2.5.3 Instance methods7

15.2.5.3.1 TrueClass#&8

&(other)9

Visibility: public10

Behavior:11

a) If other is a falseish object, return false.12

b) Otherwise, return true.13

15.2.5.3.2 TrueClass#ˆ14

^(other)15

Visibility: public16

Behavior:17

a) If other is a falseish object, return true.18

b) Otherwise, return false.19

15.2.5.3.3 TrueClass#to s20

to s21

Visibility: public22

Behavior: The method creates a direct instance of the class String, the content of which23

is “true”, and returns this instance.24

15.2.5.3.4 TrueClass#|25

152

|(other)1

Visibility: public2

Behavior: The method returns true.3

15.2.6 FalseClass4

15.2.6.1 General description5

The class FalseClass has only one instance false (see 6.6).6

Instances of the class FalseClass shall not be created by the method new of the class FalseClass.7

Therefore, the singleton method new of the class FalseClass shall be undefined, by invoking8

the method undef method (see 15.2.2.4.42) on the singleton class of the class FalseClass with9

a direct instance of the class Symbol whose name is “new” as the argument.10

15.2.6.2 Direct superclass11

The class Object12

15.2.6.3 Instance methods13

15.2.6.3.1 FalseClass#&14

&(other)15

Visibility: public16

Behavior: The method returns false.17

15.2.6.3.2 FalseClass#ˆ18

^(other)19

Visibility: public20

Behavior:21

a) If other is a falseish object, return false.22

b) Otherwise, return true.23

15.2.6.3.3 FalseClass#to s24

153

to s1

Visibility: public2

Behavior: The method creates a direct instance of the class String, the content of which3

is “false”, and returns this instance.4

15.2.6.3.4 FalseClass#|5

|(other)6

Visibility: public7

Behavior:8

a) If other is a falseish object, return false.9

b) Otherwise, return true.10

15.2.7 Numeric11

15.2.7.1 General description12

Instances of the class Numeric represent numbers. The class Numeric is the superclass of all the13

other built-in classes which represent numbers.14

The notation “the value of the instance N of the class Numeric” means the number represented15

by N.16

15.2.7.2 Direct superclass17

The class Object18

15.2.7.3 Included modules19

The following module is included in the class Numeric.20

� Comparable21

15.2.7.4 Instance methods22

15.2.7.4.1 Numeric#+@23

+@24

Visibility: public25

Behavior: The method returns the receiver.26

154

15.2.7.4.2 Numeric#−@1

-@2

Visibility: public3

Behavior:4

a) Invoke the method coerce on the receiver with an instance of the class Integer whose5

value is 0 as the only argument. Let V be the resulting value.6

1) If V is an instance of the class Array which contains two elements, let F and S7

be the first and the second element of V respectively.8

i) Invoke the method - on F with S as the only argument.9

ii) Return the resulting value.10

2) Otherwise, raise a direct instance of the class TypeError.11

15.2.7.4.3 Numeric#abs12

abs13

Visibility: public14

Behavior:15

a) Invoke the method < on the receiver with an instance of the class Integer whose value16

is 0 as an argument.17

b) If this invocation results in a trueish object, invoke the method -@ on the receiver and18

return the resulting value.19

c) Otherwise, return the receiver.20

15.2.7.4.4 Numeric#coerce21

coerce(other)22

Visibility: public23

Behavior:24

a) If the class of the receiver and the class of other are the same class, let X and Y be25

other and the receiver, respectively.26

155

b) Otherwise, let X and Y be instances of the class Float which are converted from other1

and the receiver, respectively. other and the receiver are converted as follows:2

1) Let O be other or the receiver.3

2) If O is an instance of the class Float, let F be O.4

3) Otherwise:5

i) If an invocation of the method respond to? on O with a direct instance of6

the class Symbol whose name is to f as the argument results in a falseish7

object, raise a direct instance of the class TypeError.8

ii) Invoke the method to f on O with no arguments, and let F be the resulting9

value.10

iii) If F is not an instance of the class Float, raise a direct instance of the class11

TypeError.12

4) If the value of F is NaN, the behavior is unspecified.13

5) The converted value of O is F.14

c) Create a direct instance of the class Array which consists of two elements: the first is15

X ; the second is Y.16

d) Return the instance of the class Array.17

15.2.8 Integer18

15.2.8.1 General description19

Instances of the class Integer represent integers. The ranges of these integers are unbounded.20

However the actual values computable depend on resource limitations, and the behavior when21

the resource limits are exceeded is implementation-defined.22

Instances of the class Integer shall not be created by the method new of the class Integer.23

Therefore, the singleton method new of the class Integer shall be undefined, by invoking the24

method undef method (see 15.2.2.4.42) on the singleton class of the class Integer with a direct25

instance of the class Symbol whose name is “new” as the argument.26

Subclasses of the class Integer may be defined as built-in classes. In this case:27

� The class Integer shall not have its direct instances. Instead of a direct instance of the28

class Integer, a direct instance of a subclass of the class Integer shall be created.29

� Instance methods of the class Integer need not be defined in the class Integer itself if the30

instance methods are defined in all subclasses of the class Integer.31

� For each subclass of the class Integer, the ranges of the values of its instances may be32

bounded.33

156

15.2.8.2 Direct superclass1

The class Numeric2

15.2.8.3 Instance methods3

15.2.8.3.1 Integer#+4

+(other)5

Visibility: public6

Behavior:7

a) If other is an instance of the class Integer, return an instance of the class Integer8

whose value is the sum of the values of the receiver and other .9

b) If other is an instance of the class Float, let R be the value of the receiver as a10

floating-point number.11

Return a direct instance of the class Float whose value is the sum of R and the value12

of other .13

c) Otherwise, invoke the method coerce on other with the receiver as the only argument.14

Let V be the resulting value.15

1) If V is an instance of the class Array which contains two elements, let F and S16

be the first and the second element of V respectively.17

i) Invoke the method + on F with S as the only argument.18

ii) Return the resulting value.19

2) Otherwise, raise a direct instance of the class TypeError.20

15.2.8.3.2 Integer#−21

-(other)22

Visibility: public23

Behavior:24

a) If other is an instance of the class Integer, return an instance of the class Integer25

whose value is the result of subtracting the value of other from the value of the receiver.26

b) If other is an instance of the class Float, let R be the value of the receiver as a27

floating-point number.28

157

Return a direct instance of the class Float whose value is the result of subtracting the1

value of other from R.2

c) Otherwise, invoke the method coerce on other with the receiver as the only argument.3

Let V be the resulting value.4

1) If V is an instance of the class Array which contains two elements, let F and S5

be the first and the second element of V respectively.6

i) Invoke the method - on F with S as the only argument.7

ii) Return the resulting value.8

2) Otherwise, raise a direct instance of the class TypeError.9

15.2.8.3.3 Integer#*10

*(other)11

Visibility: public12

Behavior:13

a) If other is an instance of the class Integer, return an instance of the class Integer14

whose value is the result of multiplication of the values of the receiver and other .15

b) If other is an instance of the class Float, let R be the value of the receiver as a16

floating-point number.17

Return a direct instance of the class Float whose value is the result of multiplication18

of R and the value of other .19

c) Otherwise, invoke the method coerce on other with the receiver as the only argument.20

Let V be the resulting value.21

1) If V is an instance of the class Array which contains two elements, let F and S22

be the first and the second element of V respectively.23

i) Invoke the method * on F with S as the only argument.24

ii) Return the resulting value.25

2) Otherwise, raise a direct instance of the class TypeError.26

15.2.8.3.4 Integer#/27

/(other)28

158

Visibility: public1

Behavior:2

a) If other is an instance of the class Integer:3

1) If the value of other is 0, raise a direct instance of the class ZeroDivisionError.4

2) Otherwise, let n be the value of the receiver divided by the value of other . Return5

an instance of the class Integer whose value is the largest integer smaller than or6

equal to n.7

NOTE The behavior is the same even if the receiver has a negative value. For exampple,8

-5 / 2 returns -3.9

b) Otherwise, invoke the method coerce on other with the receiver as the only argument.10

Let V be the resulting value.11

1) If V is an instance of the class Array which contains two elements, let F and S12

be the first and the second element of V respectively.13

i) Invoke the method / on F with S as the only argument.14

ii) Return the resulting value.15

2) Otherwise, raise a direct instance of the class TypeError.16

15.2.8.3.5 Integer#%17

%(other)18

Visibility: public19

Behavior:20

a) If other is an instance of the class Integer:21

1) If the value of other is 0, raise a direct instance of the class ZeroDivisionError.22

2) Otherwise, let x and y be the values of the receiver and other .23

i) Let t be the largest integer smaller than or equal to x divided by y.24

ii) Let m be x − t × y.25

iii) Otherwise, return an instance of the class Integer whose value is m.26

b) Otherwise, invoke the method coerce on other with the receiver as the only argument.27

Let V be the resulting value.28

159

1) If V is an instance of the class Array which contains two elements, let F and S1

be the first and the second element of V respectively.2

i) Invoke the method % on F with S as the only argument.3

ii) Return the resulting value.4

2) Otherwise, raise a direct instance of the class TypeError.5

15.2.8.3.6 Integer#<=>6

< =>(other)7

Visibility: public8

Behavior:9

a) If other is an instance of the class Integer:10

1) If the value of the receiver is larger than the value of other , return an instance of11

the class Integer whose value is 1.12

2) If the values of the receiver and other are the same integer, return an instance of13

the class Integer whose value is 0.14

3) If the value of the receiver is smaller than the value of other , return an instance15

of the class Integer whose value is −1.16

b) Otherwise, invoke the method coerce on other with the receiver as the only argument.17

Let V be the resulting value.18

1) If V is an instance of the class Array which contains two elements, let F and S19

be the first and the second element of V respectively.20

i) Invoke the method <=> on F with S as the only argument.21

ii) If this invocation does not result in an instance of the class Integer, the22

behavior is unspecified.23

iii) Otherwise, return the value of this invocation.24

2) Otherwise, return nil.25

15.2.8.3.7 Integer#==26

= =(other)27

Visibility: public28

160

Behavior:1

a) If other is an instance of the class Integer:2

1) If the values of the receiver and other are the same integer, return true.3

2) Otherwise, return false.4

b) Otherwise, invoke the method == on other with the receiver as the argument. Return5

the resulting value of this invocation.6

15.2.8.3.8 Integer#˜7

~8

Visibility: public9

Behavior: The method returns an instance of the class Integer whose two’s complement10

representation is the one’s complement of the two’s complement representation of the re-11

ceiver.12

15.2.8.3.9 Integer#&13

&(other)14

Visibility: public15

Behavior:16

a) If other is not an instance of the class Integer, the behavior is unspecified.17

b) Otherwise, return an instance of the class Integer whose two’s complement represen-18

tation is the bitwise AND of the two’s complement representations of the receiver and19

other .20

15.2.8.3.10 Integer#|21

|(other)22

Visibility: public23

Behavior:24

a) If other is not an instance of the class Integer, the behavior is unspecified.25

b) Otherwise, return an instance of the class Integer whose two’s complement repre-26

sentation is the bitwise inclusive OR of the two’s complement representations of the27

receiver and other .28

161

15.2.8.3.11 Integer#ˆ1

^(other)2

Visibility: public3

Behavior:4

a) If other is not an instance of the class Integer, the behavior is unspecified.5

b) Otherwise, return an instance of the class Integer whose two’s complement repre-6

sentation is the bitwise exclusive OR of the two’s complement representations of the7

receiver and other .8

15.2.8.3.12 Integer#<<9

<<(other)10

Visibility: public11

Behavior:12

a) If other is not an instance of the class Integer, the behavior is unspecified.13

b) Otherwise, let x and y be the values of the receiver and other .14

c) Return an instance of the class Integer whose value is the largest integer smaller than15

or equal to x × 2y.16

15.2.8.3.13 Integer#>>17

>>(other)18

Visibility: public19

Behavior:20

a) If other is not an instance of the class Integer, the behavior is unspecified.21

b) Otherwise, let x and y be the values of the receiver and other .22

c) Return an instance of the class Integer whose value is the largest integer smaller than23

or equal to x × 2−y.24

15.2.8.3.14 Integer#ceil25

162

ceil1

Visibility: public2

Behavior: The method returns the receiver.3

15.2.8.3.15 Integer#downto4

downto(num, &block)5

Visibility: public6

Behavior:7

a) If num is not an instance of the class Integer, or block is not given, the behavior is8

unspecified.9

b) Let i be the value of the receiver.10

c) If i is smaller than the value of num, return the receiver.11

d) Call block with an instance of the class Integer whose value is i.12

e) Decrement i by 1 and continue processing from Step c).13

15.2.8.3.16 Integer#eql?14

eql?(other)15

Visibility: public16

Behavior:17

a) If other is not an instance of the class Integer, return false.18

b) Otherwise, invoke the method == on other with the receiver as the argument.19

c) If this invocation results in a trueish object, return true. Otherwise, return false.20

15.2.8.3.17 Integer#floor21

floor22

Visibility: public23

Behavior: The method returns the receiver.24

163

15.2.8.3.18 Integer#hash1

hash2

Visibility: public3

Behavior: The method returns an implementation-defined instance of the class Integer,4

which satisfies the following condition:5

a) Let I1 and I2 be instances of the class Integer.6

b) Let H1 and H2 be the resulting values of invocations of the method hash on I1 and I2,7

respectively.8

c) The values of H1 and H2 shall be the same integer, if the values of I1 and I2 are the9

same integer.10

15.2.8.3.19 Integer#next11

next12

Visibility: public13

Behavior: The method returns an instance of the class Integer, whose value is the value14

of the receiver plus 1.15

15.2.8.3.20 Integer#round16

round17

Visibility: public18

Behavior: The method returns the receiver.19

15.2.8.3.21 Integer#succ20

succ21

Visibility: public22

Behavior: Same as the method next (see 15.2.8.3.19).23

15.2.8.3.22 Integer#times24

164

times(&block)1

Visibility: public2

Behavior:3

a) If block is not given, the behavior is unspecified.4

b) Let i be 0.5

c) If i is larger than or equal to the value of the receiver, return the receiver.6

d) Call block with an instance of the class Integer whose value is i as an argument.7

e) Increment i by 1 and continue processing from Step c).8

15.2.8.3.23 Integer#to f9

to f10

Visibility: public11

Behavior: The method returns a direct instance of the class Float whose value is the12

value of the receiver as a floating-point number.13

15.2.8.3.24 Integer#to i14

to i15

Visibility: public16

Behavior: The method returns the receiver.17

15.2.8.3.25 Integer#to s18

to s19

Visibility: public20

Behavior: The method returns a direct instance of the class String whose content satisfy21

the following conditions:22

� If the value of the receiver is negative, the first character is the character “-” (0x2d).23

� The sequence R of the rest of characters represents the magnitude M of the value of24

the receiver in base 10. If M is 0, R is a single “0”. Otherwise, the first character of25

R is not “0”.26

165

EXAMPLE 1 123.to_s returns "123".1

EXAMPLE 2 -123.to_s returns "-123".2

15.2.8.3.26 Integer#truncate3

truncate4

Visibility: public5

Behavior: The method returns the receiver.6

15.2.8.3.27 Integer#upto7

upto(num, &block)8

Visibility: public9

Behavior:10

a) If num is not an instance of the class Integer, or block is not given, the behavior is11

unspecified.12

b) Let i be the value of the receiver.13

c) If i is larger than the value of num, return the receiver.14

d) Call block with an instance of the class Integer whose value is i.15

e) Increment i by 1 and continue processing from Step c).16

15.2.9 Float17

15.2.9.1 General description18

Instances of the class Float represent floating-point numbers.19

The precision of the value of an instance of the class Float is implementation-defined; however,20

if the underlying system of a conforming processor supports IEC 60559, the representation of21

an instance of the class Float shall be the 64-bit double format as specified in IEC 60559, 3.2.2.22

When an arithmetic operation involving floating-point numbers results in a value which cannot23

be represented exactly as an instance of the class Float, the result is rounded to the nearest24

representable value. If the two nearest representable values are equally near, which is chosen is25

implementation-defined.26

If the underlying system of a conforming processor supports IEC 60559:27

� If an arithmetic operation involving floating-point numbers results in NaN while invoking28

a method of the class Float, the behavior of the method is unspecified.29

166

Instances of the class Float shall not be created by the method new of the class Float. There-1

fore, the singleton method new of the class Float shall be undefined, by invoking the method2

undef method (see 15.2.2.4.42) on the singleton class of the class Float with a direct instance3

of the class Symbol whose name is “new” as the argument.4

15.2.9.2 Direct superclass5

The class Numeric6

15.2.9.3 Instance methods7

15.2.9.3.1 Float#+8

+(other)9

Visibility: public10

Behavior:11

a) If other is an instance of the class Float, return a direct instance of the class Float12

whose value is the sum of the values of the receiver and other .13

b) If other is an instance of the class Integer, let R be the value of other as a floating-14

point number.15

Return a direct instance of the class Float whose value is the sum of R and the value16

of the receiver.17

c) Otherwise, invoke the method coerce on other with the receiver as the only argument.18

Let V be the resulting value.19

1) If V is an instance of the class Array which contains two elements, let F and S20

be the first and the second element of V respectively.21

i) Invoke the method + on F with S as the only argument.22

ii) Return the resulting value.23

2) Otherwise, raise a direct instance of the class TypeError.24

15.2.9.3.2 Float#−25

-(other)26

Visibility: public27

Behavior:28

a) If other is an instance of the class Float, return a direct instance of the class Float29

whose value is the result of subtracting the value of other from the value of the receiver.30

167

b) If other is an instance of the class Integer, let R be the value of other as a floating-1

point number.2

Return a direct instance of the class Float whose value is the result of subtracting R3

from the value of the receiver.4

c) Otherwise, invoke the method coerce on other with the receiver as the only argument.5

Let V be the resulting value.6

1) If V is an instance of the class Array which contains two elements, let F and S7

be the first and the second element of V respectively.8

i) Invoke the method - on F with S as the only argument.9

ii) Return the resulting value.10

2) Otherwise, raise a direct instance of the class TypeError.11

15.2.9.3.3 Float#*12

*(other)13

Visibility: public14

Behavior:15

a) If other is an instance of the class Float, return a direct instance of the class Float16

whose value is the result of multiplication of the values of the receiver and other .17

b) If other is an instance of the class Integer, let R be the value of other as a floating-18

point number.19

Return a direct instance of the class Float whose value is the result of multiplication20

of R and the value of the receiver.21

c) Otherwise, invoke the method coerce on other with the receiver as the only argument.22

Let V be the resulting value.23

1) If V is an instance of the class Array which contains two elements, let F and S24

be the first and the second element of V respectively.25

i) Invoke the method * on F with S as the only argument.26

ii) Return the resulting value.27

2) Otherwise, raise a direct instance of the class TypeError.28

15.2.9.3.4 Float#/29

168

/(other)1

Visibility: public2

Behavior:3

a) If other is an instance of the class Float, return a direct instance of the class Float4

whose value is the value of the receiver divided by the value of other .5

b) If other is an instance of the class Integer, let R be the value of other as a floating-6

point number.7

Return a direct instance of the class Float whose value is the value of the receiver8

divided by R.9

c) Otherwise, invoke the method coerce on other with the receiver as the only argument.10

Let V be the resulting value.11

1) If V is an instance of the class Array which contains two elements, let F and S12

be the first and the second element of V respectively.13

i) Invoke the method / on F with S as the only argument.14

ii) Return the resulting value.15

2) Otherwise, raise a direct instance of the class TypeError.16

15.2.9.3.5 Float#%17

%(other)18

Visibility: public19

Behavior: In the following steps, binary operators +, −, and ∗ represent floating-point20

arithmetic operations addition, subtraction, and multiplication which are used in the in-21

stance methods +, -, and * of the class Float, respectively. The operator ∗ has a higher22

precedence than the operators + and −.23

a) If other is an instance of the class Integer or the class Float:24

Let x be the value of the receiver.25

1) If other is an instance of the class Float, let y be the value of other . If other is26

an instance of the class Integer, let y be the value of other as a floating-point27

number.28

i) Let t be the largest integer smaller than or equal to x divided by y.29

ii) Let m be x − t ∗ y.30

169

iii) If m ∗ y < 0, return a direct instance of the class Float whose value is m +1

y.2

iv) Otherwise, return a direct instance of the class Float whose value is m.3

b) Otherwise, invoke the method coerce on other with the receiver as the only argument.4

Let V be the resulting value.5

1) If V is an instance of the class Array which contains two elements, let F and S6

be the first and the second element of V respectively.7

i) Invoke the method % on F with S as the only argument.8

ii) Return the resulting value.9

2) Otherwise, raise a direct instance of the class TypeError.10

15.2.9.3.6 Float#<=>11

< =>(other)12

Visibility: public13

Behavior:14

a) If other is an instance of the class Integer or the class Float:15

1) Let a be the value of the receiver. If other is an instance of the class Float, let16

b be the value of other . Otherwise, let b be the value of other as a floating-point17

number.18

2) If a conforming processor supports IEC 60559, and if a or b is NaN, then return19

an implementation-defined value.20

3) If a > b, return an instance of the class Integer whose value is 1.21

4) If a = b, return an instance of the class Integer whose value is 0.22

5) If a < b, return an instance of the class Integer whose value is −1.23

b) Otherwise, invoke the method coerce on other with the receiver as the only argument.24

Let V be the resulting value.25

1) If V is an instance of the class Array which contains two elements, let F and S26

be the first and the second element of V respectively.27

i) Invoke the method <=> on F with S as the only argument.28

ii) If this invocation does not result in an instance of the class Integer, the29

behavior is unspecified.30

170

iii) Otherwise, return the value of this invocation.1

2) Otherwise, return nil.2

15.2.9.3.7 Float#==3

= =(other)4

Visibility: public5

Behavior:6

a) If other is an instance of the class Float:7

1) If a conforming processor supports IEC 60559, and if the value of the receiver is8

NaN, then return false.9

2) If the values of the receiver and other are the same number, return true.10

3) Otherwise, return false.11

b) If other is an instance of the class Integer:12

1) If the values of the receiver and other are the mathematically the same, return13

true.14

2) Otherwise, return false.15

c) Otherwise, invoke the method == on other with the receiver as the argument and return16

the resulting value of this invocation.17

15.2.9.3.8 Float#ceil18

ceil19

Visibility: public20

Behavior: The method returns an instance of the class Integer whose value is the smallest21

integer larger than or equal to the value of the receiver.22

15.2.9.3.9 Float#finite?23

finite?24

Visibility: public25

Behavior:26

171

a) If the value of the receiver is a finite number, return true.1

b) Otherwise, return false.2

15.2.9.3.10 Float#floor3

floor4

Visibility: public5

Behavior: The method returns an instance of the class Integer whose value is the largest6

integer smaller than or equal to the value of the receiver.7

15.2.9.3.11 Float#infinite?8

infinite?9

Visibility: public10

Behavior:11

a) If the value of the receiver is the positive infinite, return an instance of the class Integer12

whose value is 1.13

b) If the value of the receiver is the negative infinite, return an instance of the class14

Integer whose value is −1.15

c) Otherwise, return nil.16

15.2.9.3.12 Float#round17

round18

Visibility: public19

Behavior: The method returns an instance of the class Integer whose value is the nearest20

integer to the value of the receiver. If there are two integers equally distant from the value21

of the receiver, the one which has the larger absolute value is chosen.22

15.2.9.3.13 Float#to f23

to f24

Visibility: public25

Behavior: The method returns the receiver.26

172

15.2.9.3.14 Float#to i1

to i2

Visibility: public3

Behavior: The method returns an instance of the class Integer whose value is the integer4

part of the receiver.5

15.2.9.3.15 Float#truncate6

truncate7

Visibility: public8

Behavior: Same as the method to i (see 15.2.9.3.14).9

15.2.10 String10

15.2.10.1 General description11

Instances of the class String represent sequences of characters. The sequence of characters12

represented by an instance of the class String is called the content of that instance.13

An instance of the class String which does not contain any character is said to be empty . An14

instance of the class String shall be empty when it is created by Step b) of the method new of15

the class Class.16

The notation “an instance of the class Object which represents the character C” means either17

of the following:18

� An instance of the class Integer whose value is the character code of C.19

� An instance of the class String whose content is the single character C.20

A conforming processor shall choose one of the above representations and use the same repre-21

sentation wherever this notation is used.22

Characters of an instance of the class String have their indices counted up from 0. The notation23

“the nth character of an instance of the class String” means the character of the instance whose24

index is n.25

15.2.10.2 Direct superclass26

The class Object27

15.2.10.3 Included modules28

The following modules are included in the class String.29

� Comparable30

173

15.2.10.4 Upper-case and lower-case characters1

Some methods of the class String handle upper-case and lower-case characters. The correspon-2

dence between upper-case and lower-case characters is given in Table 3.3

Table 3 – The correspondence between upper-case and lower-case characters

upper-case characters lower-case characters

A a

B b

C c

D d

E e

F f

G g

H h

I i

J j

K k

L l

M m

N n

O o

P p

Q q

R r

S s

T t

U u

V v

W w

X x

Y y

Z z

15.2.10.5 Instance methods4

15.2.10.5.1 String#*5

*(num)6

Visibility: public7

174

Behavior:1

a) If num is not an instance of the class Integer, the behavior is unspecified.2

b) Let n be the value of the num.3

c) If n is smaller than 0, raise a direct instance of the class ArgumentError.4

d) Otherwise, let C be the content of the receiver.5

e) Create a direct instance S of the class String the content of which is C repeated n6

times.7

f) Return S.8

15.2.10.5.2 String#+9

+(other)10

Visibility: public11

Behavior:12

a) If other is not an instance of the class String, the behavior is unspecified.13

b) Let S and O be the contents of the receiver and the other respectively.14

c) Return a new direct instance of the class String the content of which is the concate-15

nation of S and O.16

15.2.10.5.3 String#<=>17

< =>(other)18

Visibility: public19

Behavior:20

a) If other is not an instance of the class String, the behavior is unspecified.21

b) Let S1 and S2 be the contents of the receiver and the other respectively.22

c) If both S1 and S2 are empty, return an instance of the class Integer whose value is 0.23

d) Otherwise, if S1 is empty, return an instance of the class Integer whose value is −1.24

e) Otherwise, if S2 is empty, return an instance of the class Integer whose value is 1.25

f) Let a, b be the character codes of the first characters of S1 and S2 respectively.26

175

1) If a > b, return an instance of the class Integer whose value is 1.1

2) If a < b, return an instance of the class Integer whose value is −1.2

3) Otherwise, let new S1 and S2 be S1 and S2 excluding their first characters,3

respectively. Continue processing from Step c).4

15.2.10.5.4 String#==5

= =(other)6

Visibility: public7

Behavior:8

a) If other is not an instance of the class String, the behavior is unspecified.9

b) If other is an instance of the class String:10

1) If the contents of the receiver and other are the same, return true.11

2) Otherwise, return false.12

15.2.10.5.5 String#=˜13

=~(regexp)14

Visibility: public15

Behavior:16

a) If regexp is not an instance of the class Regexp, the behavior is unspecified.17

b) Otherwise, invoke the method match on regexp with the receiver as the argument (see18

15.2.15.7.7), and return the resulting value.19

15.2.10.5.6 String#[]20

[](*args)21

Visibility: public22

Behavior:23

a) If the length of args is 0 or larger than 2, raise a direct instance of the class ArgumentError.24

b) Let P be the first element of args. Let n be the length of the receiver.25

176

c) If P is an instance of the class Integer, let b be the value of P.1

1) If the length of args is 1:2

i) If b is smaller than 0, increment b by n. If b is still smaller than 0, return nil.3

ii) If b ≥ n, return nil.4

iii) Create an instance of the class Object which represents the bth character of5

the receiver and return this instance.6

2) If the length of args is 2:7

i) If the last element of args is an instance of the class Integer, let l be the8

value of the instance. Otherwise, the behavior is unspecified.9

ii) If l is smaller than 0, or b is larger than n, return nil.10

iii) If b is smaller than 0, increment b by n. If b is still smaller than 0, return nil.11

iv) If b + l is larger than n, let l be n − b.12

v) If l is smaller than or equal to 0, create an empty direct instance of the class13

String and return the instance.14

vi) Otherwise, create a direct instance of the class String whose content is the15

(n−l) characters of the receiver, from the bth index, preserving their order.16

Return the instance.17

d) If P is an instance of the class Regexp:18

1) If the length of args is 1, let i be 0.19

2) If the length of args is 2, and the last element of args is an instance of the class20

Integer, let i be the value of the instance. Otherwise, the behavior is unspecified.21

3) Test if the pattern of P matches the content of the receiver. (see 15.2.15.4 and22

15.2.15.5). Let M be the result of the matching process.23

4) If M is nil, return nil.24

5) If i is larger than the length of the match result attribute of M, return nil.25

6) If i is smaller than 0, increment i by the length of the match result attribute of26

M. If i is still smaller than or equal to 0, return nil.27

7) Let m be the ith element of the match result attribute of M. Create a direct28

instance of the class String whose content is the substring of m and return the29

instance.30

e) If P is an instance of the class String:31

177

1) If the length of args is 2, the behavior is unspecified.1

2) If the receiver includes the content of P as a substring, create a direct instance2

of the class String whose content is equal to the content of P and return the3

instance.4

3) Otherwise, return nil.5

f) Otherwise, the behavior is unspecified.6

15.2.10.5.7 String#capitalize7

capitalize8

Visibility: public9

Behavior: The method returns a new direct instance of the class String which contains10

all the characters of the receiver, except:11

� If the first character of the receiver is a lower-case character, the first character of the12

resulting instance is the corresponding upper-case character.13

� If the ith character of the receiver (where i > 0) is an upper case character, the ith14

character of the resulting instance is the corresponding lower-case character.15

15.2.10.5.8 String#capitalize!16

capitalize!17

Visibility: public18

Behavior:19

a) Let s be the content of the instance of the class String returned when the method20

capitalize is invoked on the receiver.21

b) If the content of the receiver and s are the same, return nil. Otherwise, change the22

content of the receiver to s, and return the receiver.23

15.2.10.5.9 String#chomp24

chomp(rs ="\n")25

Visibility: public26

Behavior:27

178

a) If rs is nil, return a new direct instance of the class String whose content is the same1

as the receiver.2

b) If the receiver is empty, return a new empty direct instance of the class String.3

c) If rs is not an instance of the class String, the behavior is unspecified.4

d) Otherwise, return a new direct instance of the class String whose content is the same5

as the receiver, except the following characters:6

1) If rs consists of only one character 0x0a, the line-terminator on the end, if any, is7

excluded.8

2) If rs is empty, a sequence of line-terminators on the end, if any, is excluded.9

3) Otherwise, if the receiver ends with the content of rs, this sequence of characters10

at the end of the receiver is excluded.11

15.2.10.5.10 String#chomp!12

chomp!(rs ="\n")13

Visibility: public14

Behavior:15

a) Let s be the content of the instance of the class String returned when the method16

chomp is invoked on the receiver with rs as the argument.17

b) If the content of the receiver and s are the same, return nil. Otherwise, change the18

content of the receiver to s, and return the receiver.19

15.2.10.5.11 String#chop20

chop21

Visibility: public22

Behavior:23

a) If the receiver is empty, return a new empty direct instance of the class String.24

b) Otherwise, create a new direct instance of the class String whose content is the receiver25

without the last character and return this instance. If the last character is 0x0a, and26

the character just before the 0x0a is 0x0d, the 0x0d is also dropped.27

15.2.10.5.12 String#chop!28

179

chop!1

Visibility: public2

Behavior:3

a) Let s be the content of the instance of the class String returned when the method4

chop is invoked on the receiver.5

b) If the content of the receiver and s are the same, return nil. Otherwise, change the6

content of the receiver to s, and return the receiver.7

15.2.10.5.13 String#downcase8

downcase9

Visibility: public10

Behavior: The method returns a new direct instance of the class String which contains11

all the characters of the receiver, with the upper-case characters replaced with the corre-12

sponding lower-case characters.13

15.2.10.5.14 String#downcase!14

downcase!15

Visibility: public16

Behavior:17

a) Let s be the content of the instance of the class String returned when the method18

downcase is invoked on the receiver.19

b) If the content of the receiver and s are the same, return nil. Otherwise, change the20

content of the receiver to s, and return the receiver.21

15.2.10.5.15 String#each line22

each line(&block)23

Visibility: public24

Behavior: Let s be the content of the receiver. Let c be the first character of s.25

a) If block is not given, the behavior is unspecified.26

180

b) Find the first 0x0a in s from c. If there is such a 0x0a:1

1) Let d be that 0x0a.2

2) Create a direct instance S of the class String whose content is a sequence of3

characters from c to d.4

3) Call block with S as the argument.5

4) If d is the last character of s, return the receiver. Otherwise, let new c be the6

character just after d and continue processing from Step b).7

c) If there is not such a 0x0a, create a direct instance of the class String whose content is8

a sequence of characters from c to the last character of s. Call block with this instance9

as the argument.10

d) Return the receiver.11

15.2.10.5.16 String#empty?12

empty?13

Visibility: public14

Behavior:15

a) If the receiver is empty, return true.16

b) Otherwise, return false.17

15.2.10.5.17 String#eql?18

eql?(other)19

Visibility: public20

Behavior:21

a) If other is an instance of the class String:22

1) If the contents of the receiver and other are the same, return true.23

2) Otherwise, return false.24

b) If other is not an instance of the class String, return false.25

15.2.10.5.18 String#gsub26

181

gsub(*args, &block)1

Visibility: public2

Behavior:3

a) If the length of args is 0 or larger than 2, or the length of args is 1 and block is not4

given, raise a direct instance of the class ArgumentError.5

b) Let P be the first element of args. If P is not an instance of the class Regexp, or the6

length of args is 2 and the last element of args is not an instance of the class String,7

the behavior is unspecified.8

c) Let S be the content of the receiver, and let l be the length of S.9

d) Let L be an empty list and let n be an integer 0.10

e) Test if the pattern of P matches S from the index n (see 15.2.15.4 and 15.2.15.5). Let11

M be the result of the matching process.12

f) If M is nil, append to L the substring of S beginning at the nth character up to the13

last character of S.14

g) Otherwise:15

1) If the length of args is 1:16

i) Call block with a new direct instance of the class String whose content is the17

matched substring of M as the argument.18

ii) Let V be the resulting value of this call. If V is not an instance of the class19

String, the behavior is unspecified.20

2) Let pre be the pre-match (see 15.2.16.1) of M. Append to L the substring of pre21

beginning at the nth character up to the last character of pre, unless n is larger22

than the index of the last character of pre.23

3) If the length of args is 1, append the content of V to L. If the length of args is 2,24

append to L the content of the last element of args.25

4) Let post be the post-match (see 15.2.16.1) of M. Let i be the index of the first26

character of post within S.27

i) If i is equal to n, i.e. if P matched an empty string:28

I) Append to L a new direct instance of the class String whose content is29

the ith character of S.30

II) Increment n by 1.31

182

ii) Otherwise, let new n be i.1

5) If n < l, continue processing from Step e).2

h) Create a direct instance of the class String whose content is the concatenation of all3

the elements of L, and return the instance.4

15.2.10.5.19 String#gsub!5

gsub!(*args, &block)6

Visibility: public7

Behavior:8

a) Let s be the content of the instance of the class String returned when the method9

gsub is invoked on the receiver with the same arguments.10

b) If the content of the receiver and s are the same, return nil. Otherwise, change the11

content of the receiver to s, and return the receiver.12

15.2.10.5.20 String#hash13

hash14

Visibility: public15

Behavior: The method returns an implementation-defined instance of the class Integer16

which satisfies the following condition:17

a) Let S1 and S2 be two distinct instances of the class String.18

b) Let H1 and H2 be the resulting values of the invocations of the method hash on S1 and19

S2 respectively.20

c) If S1 and S2 has the same content, the values of H1 and H2 shall be the same integer.21

15.2.10.5.21 String#include?22

include?(obj)23

Visibility: public24

Behavior:25

a) If obj is an instance of the class Integer:26

183

If the receiver includes the character whose character code is the value of obj , return1

true. Otherwise, return false.2

b) If obj is an instance of the class String:3

If there exists a substring of the receiver whose sequence of characters is the same as4

the content of obj , return true. Otherwise, return false.5

c) Otherwise, the behavior is unspecified.6

15.2.10.5.22 String#index7

index(substring, offset =0)8

Visibility: public9

Behavior:10

a) If substring is not an instance of the class String, the behavior is unspecified.11

b) Let R and S be the contents of the receiver and substring , respectively.12

c) If offset is not an instance of the class Integer, the behavior is unspecified.13

d) Let n be the value of offset .14

e) If n is larger than or equal to 0, let O be n.15

f) Otherwise, let O be l + n, where l is the length of S.16

g) If O is smaller than 0, return nil.17

h) If S appears as a substring of R at one or more positions whose index is larger than18

or equal to O, return an instance of the class Integer whose value is the index of the19

first such position.20

i) Otherwise, return nil.21

15.2.10.5.23 String#initialize22

initialize(str ="")23

Visibility: private24

Behavior:25

a) If str is not an instance of the class String, the behavior is unspecified.26

b) Otherwise, initialize the content of the receiver to the same sequence of characters as27

the content of str .28

184

c) Return an implementation-defined value.1

15.2.10.5.24 String#initialize copy2

initialize copy(original)3

Visibility: private4

Behavior:5

a) If original is not an instance of the class String, the behavior is unspecified.6

b) If original is an instance of the class String, change the content of the receiver to the7

content of original .8

c) Return an implementation-defined value.9

15.2.10.5.25 String#intern10

intern11

Visibility: public12

Behavior:13

a) If the length of the receiver is 0, or if the receiver contains 0x00, then the behavior is14

unspecified.15

b) Otherwise, return a direct instance of the class Symbol whose name is the content of16

the receiver.17

15.2.10.5.26 String#length18

length19

Visibility: public20

Behavior: The method returns an instance of the class Integer whose value is the number21

of characters of the content of the receiver.22

15.2.10.5.27 String#match23

match(regexp)24

Visibility: public25

185

Behavior:1

a) If regexp is an instance of the class Regexp, let R be regexp.2

b) Otherwise, if regexp is an instance of the class String, create a direct instance of3

the class Regexp by invoking the method new on the class Regexp with regexp as the4

argument. Let R be the instance of the class Regexp.5

c) Otherwise, the behavior is unspecified.6

d) Invoke the method match on R with the receiver as the argument.7

e) Return the resulting value of the invocation.8

15.2.10.5.28 String#replace9

replace(other)10

Visibility: public11

Behavior: Same as the method initialize copy (see 15.2.10.5.24).12

15.2.10.5.29 String#reverse13

reverse14

Visibility: public15

Behavior: The method returns a new direct instance of the class String which contains16

all the characters of the content of the receiver in the reverse order.17

15.2.10.5.30 String#reverse!18

reverse!19

Visibility: public20

Behavior:21

a) Change the content of the receiver to the content of the resulting instance of the class22

String when the method reverse is invoked on the receiver.23

b) Return the receiver.24

15.2.10.5.31 String#rindex25

186

rindex(substring, offset =nil)1

Visibility: public2

Behavior:3

a) If substring is not an instance of the class String, the behavior is unspecified.4

b) Let R and S be the contents of the receiver and substring , respectively.5

c) If offset is given:6

1) If offset is not an instance of the class Integer, the behavior is unspecified.7

2) Let n be the value of offset .8

3) If n is larger than or equal to 0, let O be n.9

4) Otherwise, let O be l + n, where l is the length of S.10

5) If O is smaller than 0, return nil.11

d) Otherwise, let O be 0.12

e) If S appears as a substring of R at one or more positions whose index is smaller than13

or equal to O, return an instance of the class Integer whose value is the index of the14

last such position.15

f) Otherwise, return nil.16

15.2.10.5.32 String#scan17

scan(reg, &block)18

Visibility: public19

Behavior:20

a) If reg is not an instance of the class Regexp, the behavior is unspecified.21

b) If block is not given, create an empty direct instance A of the class Array.22

c) Let S be the content of the receiver, and let l be the length of S.23

d) Let n be an integer 0.24

e) Test if the pattern of reg matches S from the index n (see 15.2.15.4 and 15.2.15.5). Let25

M be the result attribute of the matching process.26

187

f) If M is not nil:1

1) Let L be the match result attribute of M.2

2) If the length of L is 1, create a direct instance V of the class String whose content3

is the matched substring of M.4

3) If the length of L is larger than 1:5

i) Create an empty direct instance V of the class Array.6

ii) Except for the first element, for each element e of L, in the same order in the7

list, append to V a new direct instance of the class String whose content is8

the substring of e.9

4) If block is given, call block with V as the argument. Otherwise, append V to A.10

5) Let post be the post-match of M. Let i be the index of the first character of post11

within S.12

i) If i and n are the same, i.e. if reg matches the empty string, increment n by13

1.14

ii) Otherwise, let new n be i.15

6) If n < l, continue processing from Step e).16

g) If block is given, return the receiver. Otherwise, return A.17

15.2.10.5.33 String#size18

size19

Visibility: public20

Behavior: Same as the method length (see 15.2.10.5.26).21

15.2.10.5.34 String#slice22

slice(*args)23

Visibility: public24

Behavior: Same as the method [] (see 15.2.10.5.6).25

15.2.10.5.35 String#split26

188

split(sep)1

Visibility: public2

Behavior:3

a) If sep is not an instance of the class Regexp, the behavior is unspecified.4

b) Create an empty direct instance A of the class Array.5

c) Let S be the content of the receiver, and let l be the length of S.6

d) Let both sp and bp be 0, and let was-empty be false.7

e) Test if the pattern of sep matches S from the index sp (see 15.2.15.4 and 15.2.15.5).8

Let M be the result of the matching process.9

f) If M is nil, append to A a new direct instance of the class String whose content is the10

substring of S beginning at the spth character up to the last character of S.11

g) Otherwise:12

1) If the matched substring of M is an empty string:13

i) If was-empty is true, append to A a new direct instance of the class String14

whose content is the bpth character of S.15

ii) Otherwise, increment sp by 1. If sp < l, let new was-empty be true and16

continue processing from Step e).17

2) Otherwise, let new was-empty be false. Let pre be the pre-match of M. Append18

to A a new direct instance of the class String whose content is the substring of19

pre beginning at the bpth character up to the last character of pre, unless bp is20

larger than the index of the last character of pre.21

3) Let L be the match result attribute of M.22

4) If the length of L is larger than 1, except for the first element, for each element e23

of L, in the same order in the list, take the following steps:24

i) Let c be the substring of e.25

ii) If c is not nil, append to A a new direct instance of the class String whose26

content is c.27

5) Let post be the post-match of M, and replace both sp and bp with the index of28

the first character of post.29

6) If sp > l, continue processing from Step e).30

189

h) If the last element of A is an instance of the class String whose content is empty,1

remove the element. Repeat this step until this condition does not hold.2

i) Return A.3

15.2.10.5.36 String#sub4

sub(*args, &block)5

Visibility: public6

Behavior:7

a) If the length of args is 1 and block is given, or the length of args is 2:8

1) If the first element of args is not an instance of the class Regexp, the behavior is9

unspecified.10

2) Test if the pattern of the first element of args matches the content of the receiver11

(see 15.2.15.4 and 15.2.15.5). Let M be the result of the matching process.12

3) If M is nil, create a direct instance of the class String whose content is the same13

as the receiver and return the instance.14

4) Otherwise:15

i) If the length of args is 1, call block with a new direct instance of the class16

String whose content is the matched substring of M as the argument. Let S17

be the resulting value of this call. If S is not an instance of the class String,18

the behavior is unspecified.19

ii) If the length of args is 2, let S be the last element of args. If S is not an20

instance of the class String, the behavior is unspecified.21

iii) Create a direct instance of the class String whose content is the concatenation22

of pre-match of M, the content of S, and post-match of M, and return the23

instance.24

b) Otherwise, raise a direct instance of the class ArgumentError.25

15.2.10.5.37 String#sub!26

sub!(*args, &block)27

Visibility: public28

Behavior:29

190

a) Let s be the content of the instance of the class String returned when the method sub1

is invoked on the receiver with the same arguments.2

b) If the content of the receiver and s are the same, return nil. Otherwise, change the3

content of the receiver to s, and return the receiver.4

15.2.10.5.38 String#to i5

to i(base =10)6

Visibility: public7

Behavior:8

a) If base is not an instance of the class Integer whose value is 2, 8, 10, nor 16, the9

behavior is unspecified. Otherwise, let b be the value of base.10

b) If the receiver is empty, return an instance of the class Integer whose value is 0.11

c) Let i be 0. Increment i by 1 while the ith character of the receiver is a whitespace12

character.13

d) If the ith character of the receiver is “+” or “−”, increment i by 1.14

e) If the ith character of the receiver is “0”, and any of the following conditions holds,15

increment i by 2:16

Let c be the character of the receiver whose index is i plus 1.17

� b is 2, and c is “b” or “B”.18

� b is 8, and c is “o” or “O”.19

� b is 10, and c is “d” or “D”.20

� b is 16, and c is “x” or “X”.21

f) Let s be a sequence of the following characters of the receiver from the ith index:22

� If b is 2, binary-digit and “ ”.23

� If b is 8, octal-digit and “ ”.24

� If b is 10, decimal-digit and “ ”.25

� If b is 16, hexadecimal-digit and “ ”.26

g) If the length of s is 0, return an instance of the class Integer whose value is 0.27

h) If s starts with “ ”, or s contains successive “ ”s, the behavior is unspecified.28

191

i) Let n be the value of s, ignoring interleaving “ ”s, computed in base b.1

If the “−” occurs in Step d), return an instance of the class Integer whose value is2

−n. Otherwise, return an instance of the class Integer whose value is n.3

15.2.10.5.39 String#to f4

to f5

Visibility: public6

Behavior:7

a) If the receiver is empty, return a direct instance of the class Float whose value is 0.0.8

b) If the receiver starts with a sequence of characters which is a float-literal, return a direct9

instance of the class Float whose value is the value of the float-literal (see 8.7.6.2).10

c) If the receiver starts with a sequence of characters which is a unprefixed-decimal-integer-11

literal, return a direct instance of the class Float whose value is the value of the12

unprefixed-decimal-integer-literal as a floating-point number (see 8.7.6.2).13

d) Otherwise, return a direct instance of the class Float whose value is implementation-14

defined.15

15.2.10.5.40 String#to s16

to s17

Visibility: public18

Behavior:19

a) If the receiver is a direct instance of the class String, return the receiver.20

b) Otherwise, create a new direct instance of the class String whose content is the same21

as the content of the receiver and return this instance.22

15.2.10.5.41 String#to sym23

to sym24

Visibility: public25

Behavior: Same as the method intern (see 15.2.10.5.25).26

15.2.10.5.42 String#upcase27

192

upcase1

Visibility: public2

Behavior: The method returns a new direct instance of the class String which contains3

all the characters of the receiver, with all the lower-case characters replaced with the cor-4

responding upper-case characters.5

15.2.10.5.43 String#upcase!6

upcase!7

Visibility: public8

Behavior:9

a) Let s be the content of the instance of the class String returned when the method10

upcase is invoked on the receiver.11

b) If the content of the receiver and s are the same, return nil. Otherwise, change the12

content of the receiver to s, and return the receiver.13

15.2.11 Symbol14

15.2.11.1 General description15

Instances of the class Symbol represent names (see 8.7.6.6). No two instances of the class Symbol16

shall represent the same name.17

Instances of the class Symbol shall not be created by the method new of the class Symbol.18

Therefore, the singleton method new of the class Symbol shall be undefined, by invoking the19

method undef method (see 15.2.2.4.42) on the singleton class of the class Symbol with a direct20

instance of the class Symbol whose name is “new” as the argument.21

15.2.11.2 Direct superclass22

The class Object23

15.2.11.3 Instance methods24

15.2.11.3.1 Symbol#===25

= = =(other)26

Visibility: public27

Behavior: Same as the method == of the module Kernel (see 15.3.1.3.1).28

193

15.2.11.3.2 Symbol#id2name1

id2name2

Visibility: public3

Behavior: The method creates a direct instance of the class String, the content of which4

represents the name of the receiver, and returns this instance.5

15.2.11.3.3 Symbol#to s6

to s7

Visibility: public8

Behavior: Same as the method id2name (see 15.2.11.3.2).9

15.2.11.3.4 Symbol#to sym10

to sym11

Visibility: public12

Behavior: The method returns the receiver.13

15.2.12 Array14

15.2.12.1 General description15

Instances of the class Array represent arrays, which are unbounded. An instance of the class16

Array which has no element is said to be empty . The number of elements in an instance of the17

class Array is called its length.18

Instances of the class Array shall be empty when they are created by Step b) of the method new19

of the class Class.20

Elements of an instance of the class Array have their indices counted up from 0.21

Given an instance A of the class Array, operations append, prepend, and remove are defined22

as follows:23

append: To append an object O to A is defined as follows:24

Insert O after the last element of A.25

Appending an object to A increases its length by 1.26

194

prepend: To prepend an object O to A is defined as follows:1

Insert O to the first index of A. Original elements of A are moved toward the end of A by2

one position.3

Prepending an object to A increases its length by 1.4

remove: To remove an element X from A is defined as follows:5

a) Remove X from A.6

b) If X is not the last element of A, move the elements after X toward the head of A by7

one position.8

Removing an object to A decreases its length by 1.9

15.2.12.2 Direct superclass10

The class Object11

15.2.12.3 Included modules12

The following module is included in the class Array.13

� Enumerable14

15.2.12.4 Singleton methods15

15.2.12.4.1 Array.[]16

Array.[](*items)17

Visibility: public18

Behavior: The method returns a newly created instance of the class Array which contains19

the elements of items, preserving their order.20

15.2.12.5 Instance methods21

15.2.12.5.1 Array#*22

*(num)23

Visibility: public24

Behavior:25

a) If num is not an instance of the class Integer, the behavior is unspecified.26

195

b) If the value of num is smaller than 0, raise a direct instance of the class ArgumentError.1

c) If the value of num is 0, return an empty direct instance of the class Array.2

d) Otherwise, create an empty direct instance A of the class Array and repeat the following3

for num times:4

� Append all the elements of the receiver to A, preserving their order.5

e) Return A.6

15.2.12.5.2 Array#+7

+(other)8

Visibility: public9

Behavior:10

a) If other is an instance of the class Array, let A be other . Otherwise, the behavior is11

unspecified.12

b) Create an empty direct instance R of the class Array.13

c) For each element of the receiver, in the indexing order, append the element to R. Then,14

for each element of A, in the indexing order, append the element to R.15

d) Return R.16

15.2.12.5.3 Array#<<17

<<(obj)18

Visibility: public19

Behavior: The method appends obj to the receiver and return the receiver.20

15.2.12.5.4 Array#[]21

[](*args)22

Visibility: public23

Behavior:24

a) Let n be the length of the receiver.25

196

b) If the length of args is 0, raise a direct instance of the class ArgumentError.1

c) If the length of args is 1:2

1) If the only argument is an instance of the class Integer, let k be the value of the3

only argument. Otherwise, the behavior is unspecified.4

2) If k < 0, increment k by n. If k is still smaller than 0, return nil.5

3) If k ≥ n, return nil.6

4) Otherwise, return the kth element of the receiver.7

d) If the length of args is 2:8

1) If the elements of args are instances of the class Integer, let b and l be the values9

of the first and the last element of args, respectively. Otherwise, the behavior is10

unspecified.11

2) If b < 0, increment b by n. If b is still smaller than 0, return nil.12

3) If b > n or l < 0, return nil.13

4) If b = n, create an empty direct instance of the class Array and return this instance.14

5) If l > n − b, let new l be n − b.15

6) Create an empty direct instance A of the class Array. Append the l elements of16

the receiver to A, from the bth index, preserving their order. Return A.17

e) If the length of args is larger than 2, raise a direct instance of the class ArgumentError.18

15.2.12.5.5 Array#[]=19

[] =(*args)20

Visibility: public21

Behavior:22

a) Let n be the length of the receiver.23

b) If the length of args is smaller than 2, raise a direct instance of the class ArgumentError.24

c) If the length of args is 2:25

1) If the first element of args is an instance of the class Integer, let k be the value26

of the element and let V be the last element of args. Otherwise, the behavior is27

unspecified.28

197

2) If k < 0, increment k by n. If k is still smaller than 0, raise a direct instance of1

the class IndexError.2

3) If k < n, replace the kth element of the receiver with V.3

4) Otherwise, expand the length of the receiver to k + 1. The last element of the4

receiver is V. If k > n, the elements whose index is from n to k − 1 is nil.5

5) Return V.6

d) If the length of args is 3, the behavior is unspecified.7

e) If the length of args is larger than 3, raise a direct instance of the class ArgumentError.8

15.2.12.5.6 Array#clear9

clear10

Visibility: public11

Behavior: The method removes all the elements from the receiver and return the receiver.12

15.2.12.5.7 Array#collect!13

collect!(&block)14

Visibility: public15

Behavior:16

a) If block is given:17

1) For each element of the receiver in the indexing order, call block with the element18

as the only argument and replace the element with the resulting value.19

2) Return the receiver.20

b) If block is not given, the behavior is unspecified.21

15.2.12.5.8 Array#concat22

concat(other)23

Visibility: public24

Behavior:25

198

a) If other is not an instance of the class Array, the behavior is unspecified.1

b) Otherwise, append all the elements of other to the receiver, preserving their order.2

c) Return the receiver.3

15.2.12.5.9 Array#delete at4

delete at(index)5

Visibility: public6

Behavior:7

a) If the index is not an instance of the class Integer, the behavior is unspecified.8

b) Otherwise, let i be the value of the index.9

c) Let n be the length of the receiver.10

d) If i is smaller than 0, increment i by n. If i is still smaller than 0, return nil.11

e) If i is larger than or equal to n, return nil.12

f) Otherwise, remove the ith element of the receiver, and return the removed element.13

15.2.12.5.10 Array#each14

each(&block)15

Visibility: public16

Behavior:17

a) If block is given:18

1) For each element of the receiver in the indexing order, call block with the element19

as the only argument.20

2) Return the receiver.21

b) If block is not given, the behavior is unspecified.22

15.2.12.5.11 Array#each index23

199

each index(&block)1

Visibility: public2

Behavior:3

a) If block is given:4

1) For each element of the receiver in the indexing order, call block with an argument,5

which is an instance of the class Integer whose value is the index of the element.6

2) Return the receiver.7

b) If block is not given, the behavior is unspecified.8

15.2.12.5.12 Array#empty?9

empty?10

Visibility: public11

Behavior:12

a) If the receiver is empty, return true.13

b) Otherwise, return false.14

15.2.12.5.13 Array#first15

first(*args)16

Visibility: public17

Behavior:18

a) If the length of args is 0:19

1) If the receiver is empty, return nil.20

2) Otherwise, return the first element of the receiver.21

b) If the length of args is 1:22

1) If the only argument is not an instance of the class Integer, the behavior is23

unspecified. Otherwise, let n be the value of the only argument.24

200

2) If n is smaller than 0, raise a direct instance of the class ArgumentError.1

3) Otherwise, let N be the smaller of n and the length of the receiver.2

4) Return a newly created instance of the class Array which contains the first N3

elements of the receiver, preserving their order.4

c) If the length of args is larger than 1, raise a direct instance of the class ArgumentError.5

15.2.12.5.14 Array#index6

index(object =nil)7

Visibility: public8

Behavior:9

a) If object is given:10

1) For each element E of the receiver in the indexing order, take the following steps:11

i) Invoke the method == on E with object as the argument.12

ii) If the resulting value is a trueish object, return an instance of the class13

Integer whose value is the index of E.14

2) If an instance of the class Integer is not returned in Step a) 1) ii), return nil.15

b) Otherwise, the behavior is unspecified.16

15.2.12.5.15 Array#initialize17

initialize(size =0, obj =nil, &block)18

Visibility: private19

Behavior:20

a) If size is not an instance of the class Integer, the behavior is unspecified. Otherwise,21

let n be the value of size.22

b) If n is smaller than 0, raise a direct instance of the class ArgumentError.23

c) Remove all the elements from the receiver.24

d) If n is 0, return an implementation-defined value.25

e) If n is larger than 0:26

201

1) If block is given:1

i) Let k be 0.2

ii) Call block with an argument, which is an instance of the class Integer whose3

value is k. Append the resulting value of this call to the receiver.4

iii) Increase k by 1. If k is equal to n, terminate this process. Otherwise, repeat5

from Step e) 1) ii).6

2) Otherwise, append obj to the receiver n times.7

3) Return an implementation-defined value.8

15.2.12.5.16 Array#initialize copy9

initialize copy(original)10

Visibility: private11

Behavior:12

a) If original is not an instance of the class Array, the behavior is unspecified.13

b) Remove all the elements from the receiver.14

c) Append all the elements of original to the receiver, preserving their order.15

d) Return an implementation-defined value.16

15.2.12.5.17 Array#join17

join(sep =nil)18

Visibility: public19

Behavior:20

a) If sep is neither nil nor an instance of the class String, the behavior is unspecified.21

b) Create an empty direct instance S of the class String.22

c) For each element X of the receiver, in the indexing order:23

1) If sep is not nil, and X is not the first element of the receiver, append the content24

of sep to S.25

2) If X is an instance of the class String, append the content of X to S.26

202

3) If X is an instance of the class Array:1

i) If X is the receiver, i.e. if the receiver contains itself, append an implementation-2

defined sequence of characters to S.3

ii) Otherwise, append to S the content of the instance of the class String re-4

turned by the invocation of the method join on X with sep as the argument.5

4) Otherwise, the behavior is unspecified.6

d) Return S.7

15.2.12.5.18 Array#last8

last(*args)9

Visibility: public10

Behavior:11

a) If the length of args is 0:12

1) If the receiver is empty, return nil.13

2) Otherwise, return the last element of the receiver.14

b) If the length of args is 1:15

1) If the only argument is not an instance of the class Integer, the behavior is16

unspecified. Otherwise, let n be the value of the only argument.17

2) If n is smaller than 0, raise a direct instance of the class ArgumentError.18

3) Otherwise, let N be the smaller of n and the length of the receiver.19

Return a newly created instance of the class Array which contains the last N20

elements of the receiver, preserving their order.21

c) If the length of args is larger than 1, raise a direct instance of the class ArgumentError.22

15.2.12.5.19 Array#length23

length24

Visibility: public25

Behavior: The method returns an instance of the class Integer whose value is the number26

of elements of the receiver.27

203

15.2.12.5.20 Array#map!1

map!(&block)2

Visibility: public3

Behavior: Same as the method collect! (see 15.2.12.5.7).4

15.2.12.5.21 Array#pop5

pop6

Visibility: public7

Behavior:8

a) If the receiver is empty, return nil.9

b) Otherwise, remove the last element from the receiver and return that element.10

15.2.12.5.22 Array#push11

push(*items)12

Visibility: public13

Behavior:14

a) For each element of items, in the indexing order, append it to the receiver.15

b) Return the receiver.16

15.2.12.5.23 Array#replace17

replace(other)18

Visibility: public19

Behavior: Same as the method initialize copy (see 15.2.12.5.16).20

15.2.12.5.24 Array#reverse21

204

reverse1

Visibility: public2

Behavior: The method returns a newly created instance of the class Array which contains3

all the elements of the receiver in the reverse order.4

15.2.12.5.25 Array#reverse!5

reverse!6

Visibility: public7

Behavior: The method reverses the order of the elements of the receiver and return the8

receiver.9

15.2.12.5.26 Array#rindex10

rindex(object =nil)11

Visibility: public12

Behavior:13

a) If object is given:14

1) For each element E of the receiver in the reverse indexing order, take the following15

steps:16

i) Invoke the method == on E with object as the argument.17

ii) If the resulting value is a trueish object, return an instance of the class18

Integer whose value is the index of E.19

2) If an instance of the class Integer is not returned in Step a) 1) ii), return nil.20

b) Otherwise, the behavior is unspecified.21

15.2.12.5.27 Array#shift22

shift23

Visibility: public24

Behavior:25

205

a) If the receiver is empty, return nil.1

b) Otherwise, remove the first element from the receiver and return that element.2

15.2.12.5.28 Array#size3

size4

Visibility: public5

Behavior: Same as the method length (see 15.2.12.5.19).6

15.2.12.5.29 Array#slice7

slice(*args)8

Visibility: public9

Behavior: Same as the method [] (see 15.2.12.5.4).10

15.2.12.5.30 Array#unshift11

unshift(*items)12

Visibility: public13

Behavior:14

a) For each element of items, in the reverse indexing order, prepend it to the receiver.15

b) Return the receiver.16

15.2.13 Hash17

15.2.13.1 General description18

Instances of the class Hash represent hashes, which are sets of key/value pairs.19

An instance of the class Hash which has no key/value pair is said to be empty . Instances of20

the class Hash shall be empty when they are created by Step b) of the method new of the class21

Class.22

An instance of the class Hash cannot contain more than one key/value pair for each key.23

An instance of the class Hash has the following attribute:24

default value or proc: Either of the followings:25

206

� A default value, which is returned by the method [] when the specified key is not1

found in the instance of the class Hash.2

� A default proc, which is an instance of the class Proc and used to generate the return3

value of the method [] when the specified key is not found in the instance of the class4

Hash.5

An instance of the class Hash shall not have both a default value and a default proc simul-6

taneously.7

Given two keys K1 and K2, the notation “K1 ≡ K2” means that the keys are equivalent, i.e. all8

of the following conditions hold:9

� An invocation of the method eql? on K1 with K2 as the only argument evaluates to a10

trueish object.11

� Let H1 and H2 be the results of invocations of the method hash on K1 and K2, respectively.12

H1 and H2 are the instances of the class Integer which represents the same integer.13

A conforming processor may define a certain range of integers, and when the values of H114

or H2 lies outside of this range, the processor may convert H1 or H2 to another instance of15

the class Integer whose value is within the range. Let I1 and I2 be each of the resulting16

instances respectively.17

The values of I1 and I2 are the same integer.18

If H1 or H2 is not an instance of the class Integer, whether K1 ≡ K2 is unspecified.19

NOTE K1 ≡ K2 is not equivalent to K2 ≡ K1.20

15.2.13.2 Direct superclass21

The class Object22

15.2.13.3 Included modules23

The following module is included in the class Hash.24

� Enumerable25

15.2.13.4 Instance methods26

15.2.13.4.1 Hash#==27

= =(other)28

Visibility: public29

Behavior:30

207

a) If other is not an instance of the class Hash, the behavior is unspecified.1

b) If all of the following conditions hold, return true:2

� The receiver and other have the same number of key/value pairs.3

� For each key/value pair P in the receiver, other has a corresponding key/value4

pair Q which satisfies the following conditions:5

— The key of P ≡ the key of Q.6

— An invocation of the method == on the value of P with the value of Q as an7

argument results in a trueish object.8

c) Otherwise, return false.9

15.2.13.4.2 Hash#[]10

[](key)11

Visibility: public12

Behavior:13

a) If the receiver has a key/value pair P where key ≡ the key of P, return the value of P.14

b) Otherwise, invoke the method default on the receiver with key as the argument and15

return the resulting value.16

15.2.13.4.3 Hash#[]=17

[] =(key, value)18

Visibility: public19

Behavior:20

a) If the receiver has a key/value pair P where key ≡ the key of P, replace the value of P21

with value.22

b) Otherwise:23

1) If key is a direct instance of the class String, create a copy of key , i.e. create a24

direct instance K of the class String whose content is the same as the key.25

2) If key is not an instance of the class String, let K be key .26

3) If key is an instance of a subclass of the class String, whether to create a copy or27

not is implementation-defined.28

208

4) Store a pair of K and value into the receiver.1

c) Return value.2

15.2.13.4.4 Hash#clear3

clear4

Visibility: public5

Behavior:6

a) Remove all the key/value pairs from the receiver.7

b) Return the receiver.8

15.2.13.4.5 Hash#default9

default(*args)10

Visibility: public11

Behavior:12

a) If the length of args is larger than 1, raise a direct instance of the class ArgumentError.13

b) If the receiver has the default value, return the value.14

c) If the receiver has the default proc:15

1) If the length of args is 0, return nil.16

2) If the length of args is 1, invoke the method call on the default proc of the17

receiver with two arguments, the receiver and the only element of args. Return18

the resulting value of this invocation.19

d) Otherwise, return nil.20

15.2.13.4.6 Hash#default=21

default =(value)22

Visibility: public23

Behavior:24

a) If the receiver has the default proc, remove the default proc.25

209

b) Set the default value of the receiver to value.1

c) Return value.2

15.2.13.4.7 Hash#default proc3

default proc4

Visibility: public5

Behavior:6

a) If the receiver has the default proc, return the default proc.7

b) Otherwise, return nil.8

15.2.13.4.8 Hash#delete9

delete(key, &block)10

Visibility: public11

Behavior:12

a) If the receiver has a key/value pair P where key ≡ the key of P, remove P from the13

receiver and return the value of P.14

b) Otherwise:15

1) If block is given, call block with key as the argument. Return the resulting value16

of this call.17

2) Otherwise, return nil.18

15.2.13.4.9 Hash#each19

each(&block)20

Visibility: public21

Behavior:22

a) If block is given, for each key/value pair of the receiver in an implementation-defined23

order:24

1) Create a direct instance of the class Array which contains two elements, the key25

and the value of the pair.26

210

2) Call block with the instance as an argument.1

Return the receiver.2

b) If block is not given, the behavior is unspecified.3

15.2.13.4.10 Hash#each key4

each key(&block)5

Visibility: public6

Behavior:7

a) If block is given, for each key/value pair of the receiver, in an implementation-defined8

order, call block with the key of the pair as the argument. Return the receiver.9

b) If block is not given, the behavior is unspecified.10

15.2.13.4.11 Hash#each value11

each value(&block)12

Visibility: public13

Behavior:14

a) If block is given, call block for each key/value pair of the receiver, with the value as the15

argument, in an implementation-defined order. Return the receiver.16

b) If block is not given, the behavior is unspecified.17

15.2.13.4.12 Hash#empty?18

empty?19

Visibility: public20

Behavior:21

a) If the receiver is empty, return true.22

b) Otherwise, return false.23

15.2.13.4.13 Hash#has key?24

211

has key?(key)1

Visibility: public2

Behavior:3

a) If the receiver has a key/value pair P where key ≡ the key of P, return true.4

b) Otherwise, return false.5

15.2.13.4.14 Hash#has value?6

has value?(value)7

Visibility: public8

Behavior:9

a) If the receiver has a key/value pair whose value holds the following condition, return10

true.11

� An invocation of the method == on the value with value as the argument result in12

a trueish object.13

b) Otherwise, return false.14

15.2.13.4.15 Hash#include?15

include?(key)16

Visibility: public17

Behavior: Same as the method has key? (see 15.2.13.4.13).18

15.2.13.4.16 Hash#initialize19

initialize(*args, &block)20

Visibility: private21

Behavior:22

a) If block is given, and the length of args is not 0, raise a direct instance of the class23

ArgumentError.24

212

b) If block is given and the length of args is 0, create a direct instance of the class Proc1

which represents block and set the default proc of the receiver to this instance.2

c) If block is not given:3

1) If the length of args is 0, let D be nil.4

2) If the length of args is 1, let D be the only argument.5

3) If the length of args is larger than 1, raise a direct instance of the class ArgumentError.6

4) Set the default value of the receiver to D.7

d) Return an implementation-defined value.8

15.2.13.4.17 Hash#initialize copy9

initialize copy(original)10

Visibility: private11

Behavior:12

a) If original is not an instance of the class Hash, the behavior is unspecified.13

b) Remove all the key/value pairs from the receiver.14

c) For each key/value pair P of original , in an implementation-defined order, add or15

update a key/value pair of the receiver by invoking the method []= (see 15.2.13.4.3)16

on the receiver with the key of P and the value of P as the arguments.17

d) Remove the default value or the default proc from the receiver.18

e) If orignal has a default value, set the default value of the receiver to that value.19

f) If orignal has a default proc, set the default proc of the receiver to that proc.20

g) Return an implementation-defined value.21

15.2.13.4.18 Hash#key?22

key?(key)23

Visibility: public24

Behavior: Same as the method has key? (see 15.2.13.4.13).25

15.2.13.4.19 Hash#keys26

213

keys1

Visibility: public2

Behavior: The method returns a newly created instance of the class Array whose content3

is all the keys of the receiver. The order of the keys stored is implementation-defined.4

15.2.13.4.20 Hash#length5

length6

Visibility: public7

Behavior: The method returns an instance of the class Integer whose value is the number8

of key/value pairs stored in the receiver.9

15.2.13.4.21 Hash#member?10

member?(key)11

Visibility: public12

Behavior: Same as the method has key? (see 15.2.13.4.13).13

15.2.13.4.22 Hash#merge14

merge(other, &block)15

Visibility: public16

Behavior:17

a) If other is not an instance of the class Hash, the behavior is unspecified.18

b) Otherwise, create a direct instance H of the class Hash which has the same key/value19

pairs as the receiver.20

c) For each key/value pair P of other , in an implementation-defined order:21

1) If block is given:22

i) If H has the key/value pair Q where the key of P ≡ the key of Q, call block23

with three arguments, the key of P, the value of Q, and the value of P. Let24

V be the resulting value. Add or update a key/value pair of the receiver by25

invoking the method []= (see 15.2.13.4.3) on H with the key of P and V as26

the arguments.27

214

ii) Otherwise, add or update a key/value pair of the receiver by invoking the1

method []= (see 15.2.13.4.3) on H with the key of P and the value of P as2

the arguments.3

2) If block is not given, add or update a key/value pair of the receiver by invoking4

the method []= (see 15.2.13.4.3) on H with the key of P and the value of P as5

the arguments.6

d) Return H.7

15.2.13.4.23 Hash#replace8

replace(other)9

Visibility: public10

Behavior: Same as the method initialize copy (see 15.2.13.4.17).11

15.2.13.4.24 Hash#shift12

shift13

Visibility: public14

Behavior:15

a) If the receiver is empty:16

1) If the receiver has the default proc, invoke the method call on the default proc17

with two arguments, the receiver and nil. Return the resulting value of this call.18

2) If the receiver has the default value, return the value.19

3) Otherwise, return nil.20

b) Otherwise, choose a key/value pair P and remove P from the receiver. Return a newly21

created instance of the class Array which contains two elements, the key and the value22

of P.23

Which pair is chosen is implementation-defined.24

15.2.13.4.25 Hash#size25

size26

Visibility: public27

Behavior: Same as the method length (see 15.2.13.4.20).28

215

15.2.13.4.26 Hash#store1

store(key, value)2

Visibility: public3

Behavior: Same as the method []= (see 15.2.13.4.3).4

15.2.13.4.27 Hash#value?5

value?(value)6

Visibility: public7

Behavior: Same as the method has value? (see 15.2.13.4.14).8

15.2.13.4.28 Hash#values9

values10

Visibility: public11

Behavior: The method returns a newly created instance of the class Array which contains12

all the values of the receiver. The order of the values stored is implementation-defined.13

15.2.14 Range14

15.2.14.1 General description15

Instances of the class Range represent ranges between two values, the start and end points.16

An instance of the class Range has the following attributes:17

start point: The value at the start of the range.18

end point: The value at the end of the range.19

exclusive flag: If this is true, the end point is excluded from the range. Otherwise, the20

end point is included in the range.21

When the method clone (see 15.3.1.3.8) or the method dup (see 15.3.1.3.9) of the class Kernel22

is invoked on an instance of the class Range, those attributes shall be copied from the receiver23

to the resulting value.24

15.2.14.2 Direct superclass25

The class Object26

216

15.2.14.3 Included modules1

The following module is included in the class Range.2

� Enumerable3

15.2.14.4 Instance methods4

15.2.14.4.1 Range#==5

= =(other)6

Visibility: public7

Behavior:8

a) If all of the following conditions hold, return true:9

� other is an instance of the class Range.10

� Let S be the start point of other . Invocation of the method == on the start point11

of the receiver with S as the argument results in a trueish object.12

� Let E be the end point of other . Invocation of the method == on the end point of13

the receiver with E as the argument results in a trueish object.14

� The exclusive flags of the receiver and other are the same boolean value.15

b) Otherwise, return false.16

15.2.14.4.2 Range#===17

= = =(obj)18

Visibility: public19

Behavior:20

a) If neither the start point of the receiver nor the end point of the receiver is an instance21

of the class Numeric, the behavior is unspecified.22

b) Invoke the method <=> on the start point of the receiver with obj as the argument.23

Let S be the result of this invocation.24

1) If S is not an instance of the class Integer, the behavior is unspecified.25

2) If the value of S is larger than 0, return false.26

217

c) Invoke the method <=> on obj with the end point of the receiver as the argument. Let1

E be the result of this invocation.2

� If E is not an instance of the class Integer, the behavior is unspecified.3

� If the exclusive flag of the receiver is true, and the value of E is smaller than 0,4

return true.5

� If the exclusive flag of the receiver is false, and the value of E is smaller than or6

equal to 0, return true.7

� Otherwise, return false.8

15.2.14.4.3 Range#begin9

begin10

Visibility: public11

Behavior: The method returns the start point of the receiver.12

15.2.14.4.4 Range#each13

each(&block)14

Visibility: public15

Behavior:16

a) If block is not given, the behavior is unspecified.17

b) If an invocation of the method respond to? on the start point of the receiver with a18

direct instance of the class Symbol whose name is succ as the argument results in a19

falseish object, raise a direct instance of the class TypeError.20

c) Let V be the start point of the receiver.21

d) Invoke the method <=> on V with the end point of the receiver as the argument. Let22

C be the resulting value.23

1) If C is not an instance of the class Integer, the behavior is unspecified.24

2) If the value of C is larger than 0, return the receiver.25

3) If the value of C is 0:26

i) If the exclusive flag of the receiver is true, return the receiver.27

ii) If the exclusive flag of the receiver is false, call block with V as the argument,28

then, return the receiver.29

218

e) Call block with V as the argument.1

f) Invoke the method succ on V with no argument, and let new V be the resulting value.2

g) Continue processing from Step d).3

15.2.14.4.5 Range#end4

end5

Visibility: public6

Behavior: The method returns the end point of the receiver.7

15.2.14.4.6 Range#exclude end?8

exclude end?9

Visibility: public10

Behavior: If the exclusive flag of the receiver is true, return true. Otherwise, return false.11

15.2.14.4.7 Range#first12

first13

Visibility: public14

Behavior: Same as the method begin (see 15.2.14.4.3).15

15.2.14.4.8 Range#include?16

include?(obj)17

Visibility: public18

Behavior: Same as the method === (see 15.2.14.4.2).19

15.2.14.4.9 Range#initialize20

initialize(left, right, exclusive =false)21

Visibility: private22

219

Behavior:1

a) Invoke the method <=> on left with right as the argument. If an exception is raised and2

not handled during this invocation, raise a direct instance of the class ArgumentError.3

If the result of this invocation is not an instance of the class Integer, the behavior is4

unspecified.5

b) If exclusive is a trueish object, let f be true. Otherwise, let f be false.6

c) Set the start point, end point, and exclusive flag of the receiver to left , right , and f,7

respectively.8

d) Return an implementation-defined value.9

15.2.14.4.10 Range#last10

last11

Visibility: public12

Behavior: Same as the method end (see 15.2.14.4.5).13

15.2.14.4.11 Range#member?14

member?(obj)15

Visibility: public16

Behavior: Same as the method === (see 15.2.14.4.2).17

15.2.15 Regexp18

15.2.15.1 General description19

Instances of the class Regexp represent regular expressions, and have the following attributes.20

pattern: A pattern of the regular expression (see 15.2.15.4). The default value of this21

attribute is empty.22

If the value of this attribute is empty when a method is invoked on an instance of the class23

Regexp, except for the invocation of the method initialize, the behavior of the invoked24

method is unspecified.25

ignorecase-flag: A boolean value which indicates whether a match is performed in the26

case insensitive manner. The default value of this attribute is false.27

multiline-flag: A boolean value which indicates whether the pattern “.” matches a line-28

terminator (see 15.2.15.4). The default value of this attribute is false.29

220

15.2.15.2 Direct superclass1

The class Object2

15.2.15.3 Constants3

The following constants are defined in the class Regexp.4

IGNORECASE: An instance of the class Integer whose value is 2n, where the integer n5

is an implementation-defined value. The value of this constant shall be different from that6

of MULTILINE described below.7

MULTILINE: An instance of the class Integer whose value is 2m, where the integer m8

is an implementation-defined value.9

The above constants are used to set the ignorecase-flag and multiline-flag attributes of an in-10

stance of the class Regexp (see 15.2.15.7.1).11

15.2.15.4 Patterns12

Syntax13

pattern ::14

alternative15

| pattern 1 | alternative 216

alternative ::17

[empty]18

| alternative 3 term19

term ::20

anchor21

| atom 122

| atom 2 quantifier23

anchor ::24

left-anchor | right-anchor25

left-anchor ::26

\A | ^27

right-anchor ::28

\z | $29

quantifier ::30

* | + | ?31

221

atom ::1

pattern-character2

| grouping3

| .4

| atom-escape-sequence5

pattern-character ::6

source-character but not regexp-meta-character7

regexp-meta-character ::8

| | . | * | + | ^ | ? | (|) | # | \ | $9

| future-reserved-meta-character10

future-reserved-meta-character ::11

[|] | { | }12

grouping ::13

(pattern)14

atom-escape-sequence ::15

decimal-escape-sequence16

| regexp-character-escape-sequence17

decimal-escape-sequence ::18

\ decimal-digit-except-zero19

regexp-character-escape-sequence ::20

regexp-escape-sequence21

| regexp-non-escaped-sequence22

| hexadecimal-escape-sequence23

| regexp-octal-escape-sequence24

| regexp-control-escape-sequence25

regexp-escape-sequence ::26

\ regexp-escaped-character27

regexp-escaped-character ::28

n | t | r | f | v | a | e29

regexp-non-escaped-sequence ::30

\ regexp-meta-character31

regexp-octal-escape-sequence ::32

octal-escape-sequence but not decimal-escape-sequence33

222

regexp-control-escape-sequence ::1

\ (C- | c) regexp-control-escaped-character2

regexp-control-escaped-character ::3

regexp-character-escape-sequence4

| ?5

| source-character but not (\ | ?)6

future-reserved-meta-characters are reserved for the extension of the pattern of regular expres-7

sions.8

Semantics9

A regular expression selects specific substrings from a string called a target string according10

to the pattern of the regular expression. If the pattern matches more than one substring, the11

substring which begins earliest in the target string is selected. If there is more than one such12

substring beginning at that point, the substring that has the highest priority, which is described13

below, is selected. Each component of the pattern matches a substring of the target string as14

follows:15

a) A pattern matches the following substring:16

1) If the pattern is an alternative1, it matches the string matched with the alternative1.17

2) If the pattern is a pattern1 | alternative2, it matches the string matched with either the18

pattern1 or the alternative2. The one matched with the pattern1 has a higher priority.19

EXAMPLE 1 "ab".slice(/(a|ab)/) returns "a", not "ab".20

b) An alternative matches the following substring:21

1) If the alternative is [empty], it matches an empty string.22

2) If the alternative is an alternative3 term, the alternative matches the substring whose23

first part is matched with the alternative3 and whose rest part is matched with the24

term.25

If there is more than one such substring, the priority of the substrings is determined26

as follows:27

i) If there is more than one candidate which is matched with the alternative3, a28

substring whose first part is a candidate with a higher priority has a higher priority.29

EXAMPLE 2 "abc".slice(/(a|ab)(c|b)/) returns "ab", not "abc". In this case,30

(a|ab) is prior to (c|b).31

ii) If the first parts of substrings are the same, and if there is more than one candidate32

which is matched with the term, a substring whose rest part is a candidate with a33

higher priority has a higher priority.34

EXAMPLE 3 "abc".slice(/a(b|bc)/) returns "ab", not "abc".35

223

c) A term matches the following substring:1

1) If the term is an atom1, it matches the string matched with the atom1.2

2) If the term is an atom2 quantifier, it matches a string as follows:3

i) If the quantifier is *, it matches a sequence of zero or more strings matched with4

the atom2.5

ii) If the quantifier is +, it matches a sequence of one or more strings matched with6

atom2.7

iii) If the quantifier is ?, it matches a sequence of zero or one string matched with the8

atom2.9

A longer sequence has a higher priority.10

EXAMPLE 4 "aaa".slice(/a*/) returns "aaa", none of "", "a", and "aa".11

3) If the term is an anchor, it matches the empty string at a specific position within the12

target string S, as follows:13

i) If the anchor is \A, it matches an empty string at the beginning of S.14

ii) If the anchor is ^, it matches an empty string at the beginning of S or just after15

a line-terminator which is followed by at least one character.16

iii) If the anchor is \z, it matches an empty string at the end of S.17

iv) If the anchor is $, it matches an empty string at the end of S or just before a18

line-terminator.19

d) An atom matches the following substring:20

1) If the atom is a pattern-character, it matches a character C represented by the pattern-21

character. If the atom is present in the pattern of an instance of the class Regexp whose22

ignorecase-flag attribute is true, it also matches a corresponding upper-case character23

of C, if C is a lower-case character, or a corresponding lower-case character of C, if C24

is an upper-case character.25

2) If the atom is a grouping, it matches the string matched with the grouping.26

3) If the atom is “.”, it matches any character except for a line-terminator. If the atom is27

present in the pattern of an instance of the class Regexp whose multiline-flag attribute28

is true, it also matches a line-terminator.29

4) If the atom is an atom-escape-sequence, it matches the string matched with the atom-30

escape-sequence.31

e) A grouping matches the substring matched with the pattern.32

f) An atom-escape-sequence matches the following substring:33

224

1) If the atom-escape-sequence is a decimal-escape-sequence, it matches the string matched1

with the decimal-escape-sequence.2

2) If the atom-escape-sequence is a regexp-character-escape-sequence, it matches a string3

of length one, the content of which is the character represented by the regexp-character-4

escape-sequence.5

g) A decimal-escape-sequence matches the following substring:6

1) Let i be an integer represented by decimal-digit-except-zero.7

2) Let G be the ith grouping in the pattern, counted from 1, in the order of the occurrence8

of “(” of groupings from the left of the pattern.9

3) If the decimal-escape-sequence is present before G within the pattern, it does not match10

any string.11

4) If G matches any string, the decimal-escape-sequence matches the same string.12

5) Otherwise, the decimal-escape-sequence does not match any string.13

h) A regexp-character-escape-sequence represents a character as follows:14

� A regexp-escape-sequence represents a character as shown in 8.7.6.3.3, Table 1.15

� A regexp-non-escaped-sequence represents a regexp-meta-character.16

� A hexadecimal-escape-sequence represents a character as described in 8.7.6.3.3.17

� A regexp-octal-escape-sequence is interpreted in the same way as an octal-escape-sequence18

(see 8.7.6.3.3).19

� A regexp-control-escape-sequence represents a character, the code of which is com-20

puted by taking bitwise AND of 0x9f and the code of the character represented by the21

regexp-control-escaped-character, except when the regexp-control-escaped-character is22

?, in which case, the regexp-control-escape-sequence represents a character whose code23

is 127.24

15.2.15.5 Matching process25

A pattern P is considered to successfully match the given string S, if there exists a substring of26

S (including S itself) matched with P.27

a) When an index is specified, it is tested if P matches the part of S which begins at the28

index and ends at the end of S. However, if the match succeeds, the string attribute of the29

resulting instance of the class MatchData is S, not the part of S which begins at the index,30

as described below.31

b) A matching process returns either an instance of the class MatchData (see 15.2.16) if the32

match succeeds or nil if the match fails.33

c) An instance of the class MatchData is created as follows:34

225

1) Let B be the substring of S which P matched.1

2) Create a direct instance of the class MatchData, and let M be the instance.2

3) Set the string attribute of M (see 15.2.16.1) to S.3

4) Create a new empty list L.4

5) Let O be a pair of the substring B and the index of the first character of B within S.5

Append O to L.6

6) For each grouping G in P, in the order of the occurrence of its “(” within P, take the7

following steps:8

i) If G matches a substring of B under the matching process of P, let BG be the9

substring. Let O be a pair of the substring BG and the index of the first character10

of BG within S. Append O to L.11

ii) Otherwise, append to L a pair whose substring and index of the substring are nil.12

7) Set the match result attribute of M to L.13

8) M is the instance of the class MatchData returned by the matching process.14

d) A matching process creates or updates a local variable binding with name “˜”, which is15

specifically used by the method Regexp.last match (see 15.2.15.6.3), as follows:16

1) Let M be the value which the matching process returns.17

2) If the binding for the name “˜” can be resolved by the process described in 9.2 as if18

“˜” were a local-variable-identifier, replace the value of the binding with M.19

3) Otherwise, create a local variable binding with name “˜” and value M in the uppermost20

non-block element of [local-variable-bindings] where the non-block element means the21

element which does not correspond to a block.22

e) A conforming processor may name the binding other than “˜”; however, it shall not be of23

the form local-variable-identifier.24

15.2.15.6 Singleton methods25

15.2.15.6.1 Regexp.compile26

Regexp.compile(*args)27

Visibility: public28

Behavior: Same as the method new (see 15.2.3.3.3).29

15.2.15.6.2 Regexp.escape30

226

Regexp.escape(string)1

Visibility: public2

Behavior:3

a) If string is not an instance of the class String, the behavior is unspecified.4

b) Let S be the content of string .5

c) Return a a new direct instance of the class String whose content is the same as S,6

except that every occurrences of characters on the left of Table 4 are replaced with the7

corresponding sequences of characters on the right of Table 4.8

Table 4 – Regexp escaped characters

Characters replaced Escaped sequence

0x0a \n

0x09 \t

0x0d \r

0x0c \f

0x20 \ 0x20

\#

$ \$

(\(

) \)

* *

+ \+

- \-

. \.

? \?

[\[

\ \\

] \]

^ \^

{ \{

| \|

} \}

15.2.15.6.3 Regexp.last match9

Regexp.last match(*index)10

227

Visibility: public1

Behavior:2

a) Search for a binding of a local variable with name “˜” as described in 9.2 as if “˜” were3

a local-variable-identifier.4

b) If the binding is found and its value is an instance of the class MatchData, let M be5

the instance. Otherwise, return nil.6

c) If the length of index is 0, return M.7

d) If the length of index is larger than 1, raise a direct instance of the class ArgumentError.8

e) If the length of index is 1, let A be the only argument.9

f) If A is not an instance of the class Integer, the behavior of the method is unspecified.10

g) Let R be the result returned by invoking the method [] (see 15.2.16.3.1) on M with11

A as the only argument.12

h) Return R.13

15.2.15.6.4 Regexp.quote14

Regexp.quote15

Visibility: public16

Behavior: Same as the method escape (see 15.2.15.6.2).17

15.2.15.7 Instance methods18

15.2.15.7.1 Regexp#initialize19

initialize(source, flag =nil)20

Visibility: private21

Behavior:22

a) If source is an instance of the class Regexp, let S be the pattern attribute of source.23

If source is an instance of the class String, let S be the content of source. Otherwise,24

the behavior is unspecified.25

b) If S is not of the form pattern (see 15.2.15.4), raise a direct instance of the class26

RegexpError.27

c) Set the pattern attribute of the receiver to S.28

228

d) If flag is an instance of the class Integer, let n be the value of the instance.1

1) If computing bitwise AND of the value of the constant IGNORECASE of the class2

Regexp and n results in non-zero value, set the ignorecase-flag attribute of the3

receiver to true.4

2) If computing bitwise AND of the value of the constant MULTILINE of the class5

Regexp and n results in non-zero value, set the multiline-flag attribute of the6

receiver to true.7

e) If flag is not an instance of the class Integer, and if flag is a trueish object, then set8

the ignorecase-flag attribute of the receiver to true.9

f) Return an implementation-defined value.10

15.2.15.7.2 Regexp#initialize copy11

initialize copy(original)12

Visibility: private13

Behavior:14

a) If original is not an instance of the class of the receiver, raise a direct instance of the15

class TypeError.16

b) Set the pattern attribute of the receiver to the pattern attribute of original .17

c) Set the ignorecase-flag attribute of the receiver to the ignorecase-flag attribute of orig-18

inal .19

d) Set the multiline-flag attribute of the receiver to the multiline-flag attribute of original .20

e) Return an implementation-defined value.21

15.2.15.7.3 Regexp#==22

= =(other)23

Visibility: public24

Behavior:25

a) If other is not an instance of the class Regexp, return false.26

b) If the corresponding attributes of the receiver and other are the same, return true.27

c) Otherwise, return false.28

229

15.2.15.7.4 Regexp#===1

= = =(string)2

Visibility: public3

Behavior:4

a) If string is not an instance of the class String, the behavior is unspecified.5

b) Let S be the content of string .6

c) Test if the pattern of the receiver matches S (see 15.2.15.4 and 15.2.15.5). Let M be7

the result of the matching process.8

d) If M is an instance of the class MatchData, return true.9

e) Otherwise, return false.10

15.2.15.7.5 Regexp#=˜11

=~(string)12

Visibility: public13

Behavior:14

a) If string is not an instance of the class String, the behavior is unspecified.15

b) Let S be the content of string .16

c) Test if the pattern of the receiver matches S (see 15.2.15.4 and 15.2.15.5). Let M be17

the result of the matching process.18

d) If M is nil return nil.19

e) If M is an instance of the class MatchData, let P be first element of the match result20

attribute of M, and let i be the index of the substring of P.21

f) Return an instance of the class Integer whose value is i.22

15.2.15.7.6 Regexp#casefold?23

casefold?24

Visibility: public25

Behavior: The method returns the value of the ignorecase-flag attribute of the receiver.26

230

15.2.15.7.7 Regexp#match1

match(string)2

Visibility: public3

Behavior:4

a) If string is not an instance of the class String, the behavior is unspecified.5

b) Let S be the content of string .6

c) Test if the pattern of the receiver matches S (see 15.2.15.4 and 15.2.15.5). Let M be7

the result of the matching process.8

d) Return M.9

15.2.15.7.8 Regexp#source10

source11

Visibility: public12

Behavior: The method returns a direct instance of the class String whose content is the13

pattern of the receiver.14

15.2.16 MatchData15

15.2.16.1 General description16

Instances of the class MatchData represent results of successful matches of instances of the class17

Regexp against instances of the class String.18

An instance of the class MatchData has the attributes called string and match result, which19

are initialized as described in 15.2.15.5. The string attribute is the target string S of a matching20

process. The match result attribute is a list whose element is a pair of a substring B matched21

by the pattern of an instance of the class Regexp or a grouping in the pattern, and the index I22

of the first character of B within S. B is called the substring of the element, and I is called the23

index of the substring of the element. Elements of the match result attribute are indexed by24

integers starting from 0.25

Given an instance M of the class MatchData, three values named matched substring , pre-26

match and post-match of M, respectively, are defined as follows:27

Let S be the string attribute of M. Let F be the first element of the match result attribute of28

M. Let B and O be the substring of F and the index of the substring of F. Let i be the sum of29

O and the length of B.30

matched substring: The matched substring of M is B.31

231

pre-match: The pre-match of M is a part of S, from the first up to, but not including the1

Oth character of S.2

post-match: The post-match of M is a part of S, from the ith up to the last character of3

S.4

15.2.16.2 Direct superclass5

The class Object6

15.2.16.3 Instance methods7

15.2.16.3.1 MatchData#[]8

[](*args)9

Visibility: public10

Behavior: Invoke the method to a on the receiver (see 15.2.16.3.12), and invoke the11

method [] on the resulting instance of the class Array with args as the arguments (see12

15.2.12.5.4), and then, return the resulting value of the invocation of the method [].13

15.2.16.3.2 MatchData#begin14

begin(index)15

Visibility: public16

Behavior:17

a) If index is not an instance of the class Integer, the behavior is unspecified.18

b) Let L be the match result attribute of the receiver, and let i be the value of index .19

c) If i is smaller than 0, or larger than or equal to the number of elements of L, raise a20

direct instance of the class IndexError.21

d) Otherwise, return the second portion of the ith element of L.22

15.2.16.3.3 MatchData#captures23

captures24

Visibility: public25

Behavior:26

232

a) Let L be the match result attribute of the receiver.1

b) Create an empty direct instance A of the class Array.2

c) Except for the first element, for each element e of L, in the same order in the list,3

append to A a direct instance of the class String whose content is the substring of e.4

d) Return A.5

15.2.16.3.4 MatchData#end6

end(index)7

Visibility: public8

Behavior:9

a) If index is not an instance of the class Integer, the behavior is unspecified.10

b) Let L be the match result attribute of the receiver, and let i be the value of index .11

c) If i is smaller than 0, or larger than or equal to the number of elements of L, raise a12

direct instance of the class IndexError.13

d) Let F and S be the substring and the index of the substring of the ith element of L,14

respectively.15

e) If F is nil, return nil.16

f) Otherwise, let f be the length of F. Return an instance of the class Integer whose17

value is the sum of S and f.18

15.2.16.3.5 MatchData#initialize copy19

initialize copy(original)20

Visibility: private21

Behavior:22

a) If original is not an instance of the class of the receiver, raise a direct instance of the23

class TypeError.24

b) Set the string attribute of the receiver to the string attribute of original .25

c) Set the match result attribute of the receiver to the match result attribute of original .26

d) Return an implementation-defined value.27

233

15.2.16.3.6 MatchData#length1

length2

Visibility: public3

Behavior:4

The method returns the number of elements of the match result attribute of the receiver.5

15.2.16.3.7 MatchData#offset6

offset(index)7

Visibility: public8

Behavior:9

a) If index is not an instance of the class Integer, the behavior is unspecified.10

b) Let L be the match result attribute of the receiver, and let i be the value of index .11

c) If i is smaller than 0, or larger than or equal to the number of elements of L, raise a12

direct instance of the class IndexError.13

d) Let S and b be the substring and the index of the substring of the ith element of L,14

respectively. Let e be the sum of b and the length of S.15

e) Return a new instance of the class Array which contains two instances of the class16

Integer, the one whose value is b and the other whose value is e, in this order.17

15.2.16.3.8 MatchData#post match18

post match19

Visibility: public20

Behavior: The method returns an instance of the class String the content of which is the21

post-match of the receiver.22

15.2.16.3.9 MatchData#pre match23

pre match24

Visibility: public25

Behavior: The method returns an instance of the class String the content of which is the26

pre-match of the receiver.27

234

15.2.16.3.10 MatchData#size1

size2

Visibility: public3

Behavior: Same as the method length (see 15.2.16.3.6).4

15.2.16.3.11 MatchData#string5

string6

Visibility: public7

Behavior:8

The method returns an instance of the class String the content of which is the string9

attribute of the receiver.10

15.2.16.3.12 MatchData#to a11

to a12

Visibility: public13

Behavior:14

a) Let L be the match result attribute of the receiver.15

b) Create an empty direct instance A of the class Array.16

c) For each element e of L, in the same order in the list, append to A an instance of the17

class String whose content is the substring of e.18

d) Return A.19

15.2.16.3.13 MatchData#to s20

to s21

Visibility: public22

Behavior: The method returns an instance of the class String the content of which is the23

matched substring of the receiver.24

235

15.2.17 Proc1

15.2.17.1 General description2

Instances of the class Proc represent blocks.3

An instance of the class Proc has the following attribute.4

block: The block represented by the instance.5

15.2.17.2 Direct superclass6

The class Object7

15.2.17.3 Singleton methods8

15.2.17.3.1 Proc.new9

Proc.new(&block)10

Visibility: public11

Behavior:12

a) If block is given, let B be block .13

b) Otherwise:14

1) If the top of [block] is block-not-given, then raise a direct instance of the class15

ArgumentError.16

2) Otherwise, let B be the top of [block] .17

c) Create a new direct instance of the class Proc which has B as its block attribute.18

d) Return the instance.19

15.2.17.4 Instance methods20

15.2.17.4.1 Proc#[]21

[](*args)22

Visibility: public23

Behavior: Same as the method call (see 15.2.17.4.3).24

15.2.17.4.2 Proc#arity25

236

arity1

Visibility: public2

Behavior: Let B be the block represented by the receiver.3

a) If a block-parameter is omitted in B, return an instance of the class Integer whose4

value is implementation-defined.5

b) If a block-parameter is present in B :6

1) If a block-parameter-list is omitted in the block-parameter, return an instance of7

the class Integer whose value is 0.8

2) If a block-parameter-list is present in the block-parameter :9

i) If the block-parameter-list is of the form left-hand-side, return an instance of10

the class Integer whose value is 1.11

ii) If the block-parameter-list is of the form multiple-left-hand-side:12

I) If the multiple-left-hand-side is of the form grouped-left-hand-side, return13

an instance of the class Integer whose value is implementation-defined.14

II) If the multiple-left-hand-side is of the form packing-left-hand-side, return15

an instance of the class Integer whose value is −1.16

III) Otherwise, let n be the number of multiple-left-hand-side-items of the17

multiple-left-hand-side.18

IV) If the multiple-left-hand-side ends with a packing-left-hand-side, return19

an instance of the class Integer whose value is −(n+1).20

V) Otherwise, return an instance of the class Integer whose value is n.21

15.2.17.4.3 Proc#call22

call(*args)23

Visibility: public24

Behavior: Let B be the block attribute of the receiver. Let L be an empty list.25

a) Append each element of args, in the indexing order, to L.26

b) Call B with L as the arguments (see 11.3.3). Let V be the result of the call.27

c) Return V.28

237

15.2.17.4.4 Proc#clone1

clone2

Visibility: public3

Behavior:4

a) Create a direct instance of the class of the receiver which has no bindings of instance5

variables. Let O be the newly created instance.6

b) For each binding B of the instance variables of the receiver, create a variable binding7

with the same name and value as B in the set of bindings of instance variables of O.8

c) If the receiver is associated with a singleton class, let Eo be the singleton class, and9

take the following steps:10

1) Create a singleton class whose direct superclass is the direct superclass of Eo. Let11

En be the singleton class.12

2) For each binding Bv1 of the constants of Eo, create a variable binding with the13

same name and value as Bv1 in the set of bindings of constants of En.14

3) For each binding Bv2 of the class variables of Eo, create a variable binding with15

the same name and value as Bv2 in the set of bindings of class variables of En.16

4) For each binding Bm of the instance methods of Eo, create a method binding with17

the same name and value as Bm in the set of bindings of instance methods of En.18

5) Associate O with En.19

d) Set the block attribute of O to the block attribute of the receiver.20

e) Return O.21

15.2.17.4.5 Proc#dup22

dup23

Visibility: public24

Behavior:25

a) Create a direct instance of the class of the receiver which has no bindings of instance26

variables. Let O be the newly created instance.27

b) Set the block attribute of O to the block attribute of the receiver.28

c) Return O.29

238

15.2.18 Struct1

15.2.18.1 General description2

The class Struct is a generator of a structure type which is a class defining a set of fields3

and methods for accessing these fields. Fields are indexed by integers starting from 0 (see4

15.2.18.3.1). An instance of a generated class has values for the set of fields. Those values can5

be referred to and updated with accessor methods for their fields.6

15.2.18.2 Direct superclass7

The class Object8

15.2.18.3 Singleton methods9

15.2.18.3.1 Struct.new10

Struct.new(string, *symbol list)11

Visibility: public12

Behavior: The method creates a class defining a set of fields and accessor methods for13

these fields.14

When the method is invoked, take the following steps:15

a) Create a direct instance of the class Class which has the class Struct as its direct16

superclass. Let C be that class.17

b) If string is not an instance of the class String or the class Symbol, the behavior is18

unspecified.19

c) If string is an instance of the class String, let N be the content of the instance.20

1) If N is not of the form constant-identifier, raise a direct instance of the class21

ArgumentError.22

2) Otherwise,23

i) If the binding with name N exists in the set of bindings of constants in the24

class Struct, replace the value of the binding with C.25

ii) Otherwise, create a constant binding in the class Struct with name N and26

value C.27

d) If string is an instance of the class Symbol, prepend the instance to symbol list .28

e) Let i be 0.29

f) For each element S of symbol list , take the following steps:30

239

1) Let N be the name designated by S.1

2) Define a field, which is named N and is indexed by i, in C.2

3) If N is of the form local-variable-identifier or constant-identifier :3

i) Define a method named N in C which takes no arguments, and when invoked,4

returns the value of the field named N.5

ii) Define a method named N= (i.e. N postfixed by “=”) in C which takes one6

argument, and when invoked, sets the field named N to the given argument7

and returns the argument.8

4) Increment i by 1.9

g) Return C.10

Classes created by the method Struct.new are equipped with public singleton methods11

new, [], and members. The following describes those methods, assuming that the name of12

a class created by the method Struct.new is C.13

C.new(*args)14

Visibility: public15

Behavior:16

a) Create a direct instance of the class with the set of fields the receiver defines. Let I be17

the instance.18

b) Invoke the method initialize on I with args as the list of arguments.19

c) Return I.20

C.[](*args)21

Visibility: public22

Behavior: Same as the method new described above.23

C.members24

Visibility: public25

Behavior:26

240

a) Create a direct instance A of the class Array. For each field of the receiver, in the1

indexing order of the fields, create a direct instance of the class String whose content2

is the name of the field and append the instance to A.3

b) Return A.4

15.2.18.4 Instance methods5

15.2.18.4.1 Struct#==6

= =(other)7

Visibility: public8

Behavior:9

a) If other and the receiver are the same object, return true.10

b) If the class of other and that of the receiver are different, return false.11

c) Otherwise, for each field named f of the receiver, take the following steps:12

1) Let R and O be the values of the fields named f of the receiver and other respec-13

tively.14

2) If R and O are not the same object,15

i) Invoke the method == on R with O as the only argument. Let V be the16

resulting value of the invocation.17

ii) If V is a falseish object, return false.18

d) Return true.19

15.2.18.4.2 Struct#[]20

[](name)21

Visibility: public22

Behavior:23

a) If name is an instance of the class Symbol or the class String:24

1) Let N be the name designated by name.25

2) If the receiver has the field named N, return the value of the field.26

241

3) Otherwise, let S be an instance of the class Symbol with name N and raise a direct1

instance of the class NameError which has S as its name attribute.2

b) If name is an instance of the class Integer, let i be the value of name. Let n be the3

number of the fields of the receiver.4

1) If i is negative, let new i be n + i.5

2) If i is still negative or i is larger than or equal to n, raise a direct instance of the6

class IndexError.7

3) Otherwise, return the value of the field whose index is i.8

c) Otherwise, the behavior of the method is unspecified.9

15.2.18.4.3 Struct#[]=10

[] =(name, obj)11

Visibility: public12

Behavior:13

a) If name is an instance of the class Symbol or an instance of the class String:14

1) Let N be the name designated by name.15

2) If the receiver has the field named N,16

i) Replace the value of the field with obj ,17

ii) Return obj .18

3) Otherwise, let S be an instance of the class Symbol with name N and raise a direct19

instance of the class NameError which has S as its name attribute.20

b) If name is an instance of the class Integer, let i be the value of name. Let n be the21

number of the fields of the receiver.22

1) If i is negative, let new i be n + i.23

2) If i is still negative or i is larger than or equal to n, raise a direct instance of the24

class IndexError.25

3) Otherwise,26

i) Replace the value of the field whose index is i with obj27

ii) Return obj .28

c) Otherwise, the behavior of the method is unspecified.29

242

15.2.18.4.4 Struct#each1

each(&block)2

Visibility: public3

Behavior:4

a) If block is not given, the behavior is unspecified.5

b) For each field of the receiver, in the indexing order, call block with the value of the6

field as the only argument.7

c) Return the receiver.8

15.2.18.4.5 Struct#each pair9

each pair(&block)10

Visibility: public11

Behavior:12

a) If block is not given, the behavior is unspecified.13

b) For each field of the receiver, in the indexing order, take the following steps:14

1) Let N and V be the name and the value of the field respectively. Let S be an15

instance of the class Symbol with name N.16

2) Call block with the list of arguments which contains S and V in this order.17

c) Return the receiver.18

15.2.18.4.6 Struct#members19

members20

Visibility: public21

Behavior: Same as the method members described in 15.2.18.3.1.22

15.2.18.4.7 Struct#select23

243

select(&block)1

Visibility: public2

Behavior:3

a) If block is not given, the behavior is unspecified.4

b) Create an empty direct instance of the class Array. Let A be the instance.5

c) For each field of the receiver, in the indexing order, take the following steps:6

1) Let V be the value of the field.7

2) Call block with V as the only argument. Let R be the resulting value of the call.8

3) If R is a trueish object, append V to A.9

d) Return A.10

15.2.18.4.8 Struct#initialize11

initialize(*args)12

Visibility: private13

Behavior: Let Na be the length of args, and let Nf be the number of the fields of the14

receiver.15

a) If Na is larger than Nf , raise a direct instance of the class ArgumentError.16

b) Otherwise, for each field f of the receiver, let i be the index of f, and set the value of f17

to the ith element of args, or to nil when i is equal to or larger than Na.18

c) Return an implementation-defined value.19

15.2.18.4.9 Struct#initialize copy20

initialize copy(original)21

Visibility: private22

Behavior:23

a) If the receiver and original are the same object, return an implementation-defined24

value.25

244

b) If original is not an instance of the class of the receiver, raise a direct instance of the1

class TypeError.2

c) If the number of the fields of the receiver and the number of the fields of original are3

different, raise a direct instance of the class TypeError.4

d) For each field f of original , let i be the index of f, and set the value of the ith field of5

the receiver to the value of f.6

e) Return an implementation-defined value.7

15.2.19 Time8

15.2.19.1 General description9

Instances of the class Time represent dates and times.10

An instance of the class Time holds the following attributes.11

Microseconds: Microseconds since January 1, 1970 00:00 UTC. Microseconds is an integer12

whose range is implementation-defined. The value of microseconds attributes is rounded13

to fit in the representation of microseconds in an implementation-defined way. If an out of14

range value is given as microseconds when creating an instance of the class Time, a direct15

instance of either of the class ArgumentError or the class RangeError shall be raised.16

Which class is chosen is implementation-defined.17

Time zone: The time zone.18

15.2.19.2 Direct superclass19

The class Object20

15.2.19.3 Time computation21

Mathematical functions introduced in this subclause are used throughout the descriptions in22

15.2.19. These functions are assumed to compute exact mathematical results using mathematical23

real numbers.24

Leap seconds are ignored in this document. However, a conforming processor may support leap25

seconds in an implementation-defined way.26

15.2.19.3.1 Day27

The number of microseconds of a day is computed as follows:28

MicroSecPerDay = 24 × 60 × 60 × 106

The number of days since January 1, 1970 00:00 UTC which corresponds to microseconds t is29

computed as follows:30

245

Day(t) = floor

(
t

MicroSecPerDay

)
floor(t) = The integer x such that x ≤ t < x + 1

The weekday which corresponds to microseconds t is computed as follows:1

WeekDay(t) = (Day(t) + 4) modulo 7

15.2.19.3.2 Year2

A year has 365 days, except for leap years, which have 366 days. Leap years are those which3

are either:4

� divisible by 4 and not divisible by 100, or5

� divisible by 400.6

The number of days from January 1, 1970 00:00 UTC to the beginning of a year y is computed7

as follows:8

DayFromY ear(y) = 365×(y−1970)+floor

(
y − 1969

4

)
−floor

(
y − 1901

100

)
+floor

(
y − 1601

400

)

Microseconds elapsed since January 1, 1970 00:00 UTC until the beginning of y is computed as9

follows:10

MicroSecFromY ear(y) = DayFromY ear(y) × MicroSecPerDay

The year number y which corresponds to microseconds t measured from January 1, 1970 00:0011

UTC is computed as follows.12

Y earFromTime(t) = y such that, MicroSecFromY ear(y − 1) < t ≤ MicroSecFromY ear(y)

The number of days from the beginning of the year for the given microseconds t is computed as13

follows.14

DayWithinY ear(t) = Day(t) − DayFromY ear(Y earFromTime(t))

246

15.2.19.3.3 Month1

Months have usual number of days. Leap years have the extra day in February. Each month is2

identified by the number in the range 1 to 12, in the order from January to December.3

The month number which corresponds to microseconds t measured from January 1, 1970 00:004

UTC is computed as follows.5

MonthFromTime(t) =



1 if 0 ≤ DayWithinY ear(t) < 31
2 if 31 ≤ DayWithinY ear(t) < 59 + LeapY ear(t)
3 if 59 + LeapY ear(t) ≤ DayWithinY ear(t) < 90 + LeapY ear(t)
4 if 90 + LeapY ear(t) ≤ DayWithinY ear(t) < 120 + LeapY ear(t)
5 if 120 + LeapY ear(t) ≤ DayWithinY ear(t) < 151 + LeapY ear(t)
6 if 151 + LeapY ear(t) ≤ DayWithinY ear(t) < 181 + LeapY ear(t)
7 if 181 + LeapY ear(t) ≤ DayWithinY ear(t) < 212 + LeapY ear(t)
8 if 212 + LeapY ear(t) ≤ DayWithinY ear(t) < 243 + LeapY ear(t)
9 if 243 + LeapY ear(t) ≤ DayWithinY ear(t) < 273 + LeapY ear(t)
10 if 273 + LeapY ear(t) ≤ DayWithinY ear(t) < 304 + LeapY ear(t)
11 if 304 + LeapY ear(t) ≤ DayWithinY ear(t) < 334 + LeapY ear(t)
12 if 334 + LeapY ear(t) ≤ DayWithinY ear(t) < 365 + LeapY ear(t)

LeapY ear(t) =

{
1 if Y earFromTime(t) is a leap year
0 otherwise

15.2.19.3.4 Days of month6

The day of the month which corresponds to microseconds t measured from January 1, 19707

00:00 UTC is computed as follows.8

DayWithinMonth(t) =



DayWithinY ear(t) + 1 if MonthFromTime(t) = 1
DayWithinY ear(t) − 30 if MonthFromTime(t) = 2
DayWithinY ear(t) − 58 − LeapY ear(t) if MonthFromTime(t) = 3
DayWithinY ear(t) − 89 − LeapY ear(t) if MonthFromTime(t) = 4
DayWithinY ear(t) − 119 − LeapY ear(t) if MonthFromTime(t) = 5
DayWithinY ear(t) − 150 − LeapY ear(t) if MonthFromTime(t) = 6
DayWithinY ear(t) − 180 − LeapY ear(t) if MonthFromTime(t) = 7
DayWithinY ear(t) − 211 − LeapY ear(t) if MonthFromTime(t) = 8
DayWithinY ear(t) − 242 − LeapY ear(t) if MonthFromTime(t) = 9
DayWithinY ear(t) − 272 − LeapY ear(t) if MonthFromTime(t) = 10
DayWithinY ear(t) − 303 − LeapY ear(t) if MonthFromTime(t) = 11
DayWithinY ear(t) − 333 − LeapY ear(t) if MonthFromTime(t) = 12

247

15.2.19.3.5 Hours, Minutes, and Seconds1

The numbers of microseconds in an hour, a minute, and a second are as follows:2

MicroSecPerHour = 60 × 60 × 106

MicroSecPerMinute = 60 × 106

MicroSecPerSecond = 106

The hour, the minute, and the second which correspond to microseconds t measured from3

January 1, 1970 00:00 UTC are computed as follows.4

HourFromTime(t) = floor

(
t

MicroSecPerHour

)
modulo 24

MinuteFromTime(t) = floor

(
t

MicroSecPerMinute

)
modulo 60

SecondFromTime(t) = floor

(
t

MicroSecPerSecond

)
modulo 60

15.2.19.4 Time zone and Local time5

The current time zone is determined from time zone information provided by the underlying6

system. If the system does not provide information on the current local time zone, the time7

zone attribute of an instance of the class Time is implementation-defined.8

The local time for an instance of the class Time is computed from its microseconds t and time9

zone z as follows.10

LocalT ime = t + ZoneOffset(z)
ZoneOffset(z) = UTC offset of z measured in microseconds

15.2.19.5 Daylight saving time11

On system where it is possible to determine the daylight saving time for each time zone, a12

conforming processor should adjust the microseconds attributes of an instance of the class Time13

if that microseconds falls within the daylight saving time of the time zone attributes of the14

instance. An algorithm used for the adjustment is implementation-defined.15

15.2.19.6 Singleton methods16

15.2.19.6.1 Time.at17

248

Time.at(*args)1

Visibility: public2

Behavior:3

a) If the length of args is 0 or larger than 2, raise a direct instance of the class ArgumentError.4

b) If the length of args is 1, let A be the only argument.5

1) If A is an instance of the class Time, return a new instance of the class Time which6

represents the same time and has the same time zone as A.7

2) If A is an instance of the class Integer or an instance of the class Float:8

i) Let N be the value of A.9

ii) Create a direct instance of the class Time which represents the time at N×106
10

microseconds since January 1, 1970 00:00 UTC, with the current local time11

zone.12

iii) Return the resulting instance.13

3) Otherwise, the behavior is unspecified.14

c) If the length of args is 2, let S and M be the first and second element of args.15

1) If S is an instance of the class Integer, let NS be the value of S.16

2) Otherwise, the behavior is unspecified.17

3) If M is an instance of the class Integer or an instance of the class Float, let NM18

be the value of M.19

4) Otherwise, the behavior is unspecified.20

5) Create a direct instance of the class Time which represents the time at NS × 106 +21

NM microseconds since January 1, 1970 00:00 UTC, with the current local time22

zone.23

6) Return the resulting instance.24

15.2.19.6.2 Time.gm25

Time.gm(year, month =1, day =1, hour =0, min =0, sec =0, usec =0)26

Visibility: public27

Behavior:28

249

a) Compute an integer value for year , day , hour , min, sec, and usec as described below.1

Let Y, D, H, Min, S, and U be integers thus converted.2

An integer I is determined from the given object O as follows:3

1) If O is an instance of the class Integer, let I be the value of O.4

2) If O is an instance of the class Float, let I be the integral part of the value of O.5

3) If O is an instance of the class String:6

i) If the content of O is a sequence of decimal-digits, let I be the value of those7

sequence of digits computed using base 10.8

ii) Otherwise, the behavior is unspecified.9

4) Otherwise, the behavior is unspecified.10

b) Compute an integer value from month as follows:11

1) If month is an instance of the class Integer, let Mon be the value of month.12

2) If month is an instance of the class String:13

i) If the content of month is the same as one of the names of the months in the14

lower row on Table 5, ignoring the differences in case, let Mon be the integer15

which corresponds to month in the upper row on the same table.16

ii) If the first character of month is decimal-digit, compute an integer value from17

month as in Step a). Let Mon be the resulting integer.18

iii) Otherwise, raise a direct instance of the class ArgumentError.19

3) Otherwise, the behavior is unspecified.20

c) If Y is an integer such that 0 ≤ Y ≤ 138, the behavior is implementation-defined.21

d) If each integer computed above is outside the range as listed below, raise a direct22

instance of the class ArgumentError.23

� 1 ≤ Mon ≤ 1224

� 1 ≤ D ≤ 3125

� 0 ≤ H ≤ 2326

� 0 ≤ Min ≤ 5927

� 0 ≤ S ≤ 6028

Whether any conditions are placed on Y is implementation-defined.29

250

e) Let t be an integer which satisfies all of the following equations.1

� Y earFromTime(t) = Y2

� MonthFromTime(t) = Mon3

� DayWithinMonth(t) = 14

f) Compute microseconds T as follows.5

T = t + D × MicroSecPerDay + H × MicroSecPerHour+

Min × MicroSecPerMinute + S × 106 + U

g) Create a direct instance of the class Time which represents the time at T since January6

1, 1970 00:00 UTC, with the UTC time zone.7

h) Return the resulting instance.8

Table 5 – The names of months and corresponding integer

1 2 3 4 5 6 7 8 9 10 11 12

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

15.2.19.6.3 Time.local9

Time.local(year, month =1, day =1, hour =0, min =0, sec =0, usec =0)10

Visibility: public11

Behavior: Same as the method Time.gm (see 15.2.19.6.2), except that the method returns12

a direct instance of the class Time which has the current local time zone as its time zone.13

15.2.19.6.4 Time.mktime14

Time.mktime(year, month =1, day =1, hour =0, min =0, sec =0, usec =0)15

Visibility: public16

Behavior: Same as the method Time.local (see 15.2.19.6.3).17

15.2.19.6.5 Time.now18

251

Time.now1

Visibility: public2

Behavior: This method returns a direct instance of the class Time which represents the3

current time with the current local time zone.4

The behavior of this method is the same as the method new (see 15.2.3.3.3).5

15.2.19.6.6 Time.utc6

Time.utc(year, month =1, day =1, hour =0, min =0, sec =0, usec =0)7

Visibility: public8

Behavior: Same as the method Time.gm (see 15.2.19.6.2).9

15.2.19.7 Instance methods10

15.2.19.7.1 Time#+11

+(offset)12

Visibility: public13

Behavior:14

a) If offset is not an instance of the class Integer or the class Float, the behavior is15

unspecified.16

b) Let V be the value of offset .17

c) Let o be the result of computing V × 106.18

d) Let t and z be the microseconds and time zone attribute of the receiver.19

e) Create a direct instance of the class Time which represents the time at (t+o) microsec-20

onds since January 1, 1970 00:00 UTC, with z as its time zone.21

f) Return the resulting instance.22

15.2.19.7.2 Time#−23

-(offset)24

Visibility: public25

252

Behavior:1

a) If offset is not an instance of the class Integer or the class Float, the behavior is2

unspecified.3

b) Let V be the value of offset .4

c) Let o be the result of computing V × 106.5

d) Let t and z be the microseconds and time zone attribute of the receiver.6

e) Create a direct instance of the class Time which represents the time at t−o microseconds7

since January 1, 1970 00:00 UTC, with z as its time zone.8

f) Return the resulting instance.9

15.2.19.7.3 Time#<=>10

< =>(other)11

Visibility: public12

Behavior:13

a) If other is not an instance of the class Time, return nil.14

b) Otherwise, let Tr and To be microseconds attributes of the receiver and other , respec-15

tively.16

1) If Tr > To, return an instance of the class Integer whose value is 1.17

2) If Tr = To, return an instance of the class Integer whose value is 0.18

3) If Tr < To, return an instance of the class Integer whose value is −1.19

15.2.19.7.4 Time#asctime20

asctime21

Visibility: public22

Behavior:23

a) Compute the local time from the receiver (see 15.2.19.4). Let t be the result.24

b) Let W be the name of the day of the week in the second row on Table 6 which25

corresponds to WeekDay(t) in the upper row on the same table.26

c) Let Mon be the name of the month in the second row on Table 5 which corresponds27

to MonthFromTime(t) in the upper row on the same table.28

253

d) Let D, H, M, S, and Y be as follows:1

D = DayWithinMonth(t)
H = HourFromTime(t)
M = MinuteFromTime(t)
S = SecondFromTime(t)
Y = Y earFromTime(t)

e) Create a direct instance of the class String, the content of which is the following2

sequence of characters:3

W Mon D H:M :S Y

D is formatted as two digits with a leading space character (0x20) as necessary. H, M,4

and S are formatted as two digits with a leading zero as necessary.5

EXAMPLE Time.local(2001, 10, 1, 13, 20, 5).asctime returns "Mon Oct 1 13:20:05 2001".6

f) Return the resulting instance.7

Table 6 – The names of the days of the week corresponding to integers

0 1 2 3 4 5 6

Sun Mon Tue Wed Thu Fry Sat

15.2.19.7.5 Time#ctime8

ctime9

Visibility: public10

Behavior: Same as the method asctime (see 15.2.19.7.4).11

15.2.19.7.6 Time#day12

day13

Visibility: public14

Behavior:15

a) Compute the local time from the receiver (see 15.2.19.4). Let t be the result.16

b) Compute DayWithinMonth(t).17

c) Return an instance of the class Integer whose value is the result of Step b).18

254

15.2.19.7.7 Time#dst?1

dst?2

Visibility: public3

Behavior: Let T and Z be the microseconds and time zone attribute of the receiver.4

a) If T falls within the daylight saving time of Z, return true.5

b) Otherwise, return false.6

15.2.19.7.8 Time#getgm7

getgm8

Visibility: public9

Behavior: Same as the method getutc (see 15.2.19.7.10).10

15.2.19.7.9 Time#getlocal11

getlocal12

Visibility: public13

Behavior: The method returns a new instance of the class Time which has the same14

microseconds as the receiver, but has current local time zone as its time zone.15

15.2.19.7.10 Time#getutc16

getutc17

Visibility: public18

Behavior: The method returns a new instance of the class Time which has the same19

microseconds as the receiver, but has UTC as its time zone.20

15.2.19.7.11 Time#gmt?21

gmt?22

Visibility: public23

Behavior: Same as the method utc? (see 15.2.19.7.28).24

255

15.2.19.7.12 Time#gmt offset1

gmt offset2

Visibility: public3

Behavior: Same as the method utc offset (see 15.2.19.7.29).4

15.2.19.7.13 Time#gmtime5

gmtime6

Visibility: public7

Behavior: Same as the method utc (see 15.2.19.7.27).8

15.2.19.7.14 Time#gmtoff9

gmtoff10

Visibility: public11

Behavior: Same as the method utc offset (see 15.2.19.7.29).12

15.2.19.7.15 Time#hour13

hour14

Visibility: public15

Behavior:16

a) Compute the local time from the receiver (see 15.2.19.4). Let t be the result.17

b) Compute HourFromTime(t).18

c) Return an instance of the class Integer whose value is the result of Step b).19

15.2.19.7.16 Time#initialize20

initialize21

Visibility: private22

256

Behavior:1

a) Set the microseconds attribute of the receiver to microseconds elapsed since January2

1, 1970 00:00 UTC.3

b) Set the time zone attribute of the receiver to the current local time zone.4

c) Return an implementation-defined value.5

15.2.19.7.17 Time#initialize copy6

initialize copy(original)7

Visibility: private8

Behavior:9

a) If original is not an instance of the class Time, raise a direct instance of the class10

TypeError.11

b) Set the microseconds attribute of the receiver to the microseconds attribute of original .12

c) Set the time zone attribute of the receiver to the time zone attribute of original .13

d) Return an implementation-defined value.14

15.2.19.7.18 Time#localtime15

localtime16

Visibility: public17

Behavior:18

a) Change the time zone attribute of the receiver to the current local time zone.19

b) Return the receiver.20

15.2.19.7.19 Time#mday21

mday22

Visibility: public23

Behavior:24

a) Compute the local time from the receiver (see 15.2.19.4). Let t be the result.25

257

b) Compute DayWithinMonth(t).1

c) Return an instance of the class Integer whose value is the result of Step b).2

15.2.19.7.20 Time#min3

min4

Visibility: public5

Behavior:6

a) Compute the local time from the receiver (see 15.2.19.4). Let t be the result.7

b) Compute MinuteFromTime(t).8

c) Return an instance of the class Integer whose value is the result of Step b).9

15.2.19.7.21 Time#mon10

mon11

Visibility: public12

Behavior:13

a) Compute the local time from the receiver (see 15.2.19.4). Let t be the result.14

b) Compute MonthFromTime(t).15

c) Return an instance of the class Integer whose value is the result of Step b).16

15.2.19.7.22 Time#month17

month18

Visibility: public19

Behavior: Same as the method mon (see 15.2.19.7.21).20

15.2.19.7.23 Time#sec21

sec22

Visibility: public23

258

Behavior:1

a) Compute the local time from the receiver (see 15.2.19.4). Let t be the result.2

b) Compute SecondFromTime(t).3

c) Return an instance of the class Integer whose value is the result of Step b).4

15.2.19.7.24 Time#to f5

to f6

Visibility: public7

Behavior: Let t the microseconds attribute of the receiver.8

a) Compute t/106.9

b) Return a direct instance of the class Float whose value is the result of Step a).10

15.2.19.7.25 Time#to i11

to i12

Visibility: public13

Behavior: Let t the microseconds attribute of the receiver.14

a) Compute floor(t/106).15

b) Return an instance of the class Integer whose value is the result of Step a).16

15.2.19.7.26 Time#usec17

usec18

Visibility: public19

Behavior:20

a) Compute the local time from the receiver (see 15.2.19.4). Let t be the result.21

b) Compute t modulo 106.22

c) Return an instance of the class Integer whose value is the result of Step b).23

15.2.19.7.27 Time#utc24

259

utc1

Visibility: public2

Behavior:3

a) Change the time zone attribute of the receiver to UTC.4

b) Return the receiver.5

15.2.19.7.28 Time#utc?6

utc?7

Visibility: public8

Behavior: Let Z be the time zone attribute of the receiver.9

a) If Z is UTC, return true.10

b) Otherwise, return false.11

15.2.19.7.29 Time#utc offset12

utc offset13

Visibility: public14

Behavior: Let Z be the time zone attribute of the receiver.15

a) Compute floor(ZoneOffset(Z)/106).16

b) Return an instance of the class Integer whose value is the result of Step a).17

15.2.19.7.30 Time#wday18

wday19

Visibility: public20

Behavior:21

a) Compute the local time from the receiver (see 15.2.19.4). Let t be the result.22

b) Compute WeekDay(t).23

c) Return an instance of the class Integer whose value is the result of Step b)24

260

15.2.19.7.31 Time#yday1

yday2

Visibility: public3

Behavior:4

a) Compute the local time from the receiver (see 15.2.19.4). Let t be the result.5

b) Compute DayWithinY ear(t).6

c) Return an instance of the class Integer whose value is the result of Step b).7

15.2.19.7.32 Time#year8

year9

Visibility: public10

Behavior:11

a) Compute the local time from the receiver (see 15.2.19.4). Let t be the result.12

b) Compute Y earFromTime(t).13

c) Return an instance of the class Integer whose value is the result of Step b).14

15.2.19.7.33 Time#zone15

zone16

Visibility: public17

Behavior: Let Z be the time zone attribute of the receiver.18

a) Create a direct instance of the class String, the content of which represents the name19

of Z. The exact content of the instance is implementation-defined.20

b) Return the resulting instance.21

15.2.20 IO22

15.2.20.1 General description23

An instance of the class IO represents a stream, which is a source and/or a sink of data.24

An instance of the class IO has the following attributes:25

261

readability flag: A boolean value which indicates whether the stream can handle input1

operations.2

An instance of the class IO is said to be readable if and only if this flag is true.3

Reading from a stream which is not readable raises a direct instance of the class IOError.4

writability flag: A boolean value which indicates whether the stream can handle output5

operations.6

An instance of the class IO is said to be writable if and only if this flag is true.7

Writing to a stream which is not writable raises a direct instance of the class IOError.8

openness flag: A boolean value which indicates whether the stream is open.9

An instance of the class IO is said to be open if and only if this flag is true. An instance10

of the class IO is said to be closed if and only if this flag is false.11

A closed stream is neither readable nor writable.12

buffering flag: A boolean value which indicates whether the data to be written to the13

stream is buffered.14

When this flag is true, the output to the receiver may be delayed until the instance methods15

flush or close is invoked.16

An instance of the class SystemCallError may be raised when the underlying system reported17

an error during the execution of methods of the class IO.18

The behavior of the method initialize of the class IO is unspecified, i.e. whether a direct19

instance of the class IO other than the constnats STDIN, STDOUT and STDERR of the class20

Object (see 15.2.1) can be created is unspecified.21

NOTE Note that an instance of the class File, which is a subclass of the class IO, can be created by22

the method new because the behavior of the method initialize is specified in 15.2.21.4.1.23

In the following description of the methods of the class IO, a byte means an integer from 0 to24

255.25

15.2.20.2 Direct superclass26

The class Object27

15.2.20.3 Included modules28

The following module is included in the class IO.29

� Enumerable30

262

15.2.20.4 Singleton methods1

15.2.20.4.1 IO.open2

IO.open(*args, &block)3

Visibility: public4

Behavior:5

a) Invoke the method new on the receiver with all the elements of args as the arguments.6

Let I be the resulting value.7

b) If block is not given, return I.8

c) Otherwise, call block with I as the argument. Let V be the resulting value.9

d) Invoke the method close (see 15.2.20.5.1) on I with no arguments, even when an10

exception is raised and not handled in Step c).11

e) Return V.12

EXAMPLE If block is given, the method close is invoked automatically.13

File.open("data.txt"){|f|14

puts f.read15

}16

17

If block is not given, the method close should be invoked explicitly.18

f = File.open("data.txt")19

puts f.read20

f.close21

22

NOTE The behavior of invoking the method new on the class IO is unspecified. Therefore, the23

behavior of invoking the method open on the class IO is also unspecified; however, the method open24

can be invoked on the class File, which is a subclass of the class IO.25

15.2.20.5 Instance methods26

15.2.20.5.1 IO#close27

close28

Visibility: public29

Behavior:30

a) If the receiver is closed, raise a direct instance of the class IOError.31

263

b) If the buffering flag of the receiver is true, and the receiver is buffering any output,1

immediately write all the buffered data to the stream which the receiver represents.2

c) Set the openness flag of the receiver to false.3

d) Return an implementation-defined value.4

15.2.20.5.2 IO#closed?5

closed?6

Visibility: public7

Behavior:8

a) If the receiver is closed, return true.9

b) Otherwise, return false.10

15.2.20.5.3 IO#each11

each(&block)12

Visibility: public13

Behavior:14

a) If block is not given, the behavior is unspecified.15

b) If the receiver is not readable, raise a direct instance of the class IOError.16

c) If the receiver has reached its end, return the receiver.17

d) Otherwise, read characters from the receiver until 0x0a is read or the receiver reaches18

its end.19

e) Create a direct instance of the class String whose content is the sequence of characters20

read in Step d). Call block with this instance as an argument.21

f) Continue processing from Step c).22

15.2.20.5.4 IO#each byte23

each byte(&block)24

Visibility: public25

264

Behavior:1

a) If block is not given, the behavior is unspecified.2

b) If the receiver is not readable, raise a direct instance of the class IOError.3

c) If the receiver has reached its end, return the receiver.4

d) Otherwise, read a single byte from the receiver. Call block with an argument, an5

instance of the class Integer whose value is the byte.6

e) Continue processing from Step c).7

15.2.20.5.5 IO#each line8

each line(&block)9

Visibility: public10

Behavior: Same as the method each (see 15.2.20.5.3).11

15.2.20.5.6 IO#eof?12

eof?13

Visibility: public14

Behavior:15

a) If the receiver is not readable, raise a direct instance of the class IOError.16

b) If the receiver has reached its end, return true. Otherwise, return false.17

15.2.20.5.7 IO#flush18

flush19

Visibility: public20

Behavior:21

a) If the receiver is not writable, raise a direct instance of the class IOError.22

b) If the buffering flag of the receiver is true, and the receiver is buffering any output,23

immediately write all the buffered data to the stream which the receiver represents.24

c) Return the receiver.25

265

15.2.20.5.8 IO#getc1

getc2

Visibility: public3

Behavior:4

a) If the receiver is not readable, raise a direct instance of the class IOError.5

b) If the receiver has reached its end, return nil.6

c) Otherwise, read a character from the receiver. Return an instance of the class Object7

which represents the character (see 15.2.10.1).8

15.2.20.5.9 IO#gets9

gets10

Visibility: public11

Behavior:12

a) If the receiver is not readable, raise a direct instance of the class IOError.13

b) If the receiver has reached its end, return nil.14

c) Otherwise, read characters from the receiver until 0x0a is read or the receiver reaches15

its end.16

d) Create a direct instance of the class String whose content is the sequence of characters17

read in Step c) and return this instance.18

15.2.20.5.10 IO#initialize copy19

initialize copy(original)20

Visibility: private21

Behavior: The behavior of the method is unspecified.22

15.2.20.5.11 IO#print23

print(*args)24

266

Visibility: public1

Behavior:2

a) For each element of args in the indexing order:3

1) Let V be the element. If the element is nil, a conforming processor may create4

a direct instance of the class String whose content is “nil” and let V be the5

instance.6

2) Invoke the method write on the receiver with V as the argument.7

b) Return an implementation-defined value.8

15.2.20.5.12 IO#putc9

putc(obj)10

Visibility: public11

Behavior:12

a) If obj is not an instance of the class Integer or an instance of the class String, the13

behavior is unspecified. If obj is an instance of the class Integer whose value is smaller14

than 0 or larger than 255, the behavior is unspecified.15

b) If obj is an instance of the class Integer, create a direct instance S of the class String16

whose content is a single character, whose character code is the value of obj .17

c) If obj is an instance of the class String, create a direct instance S of the class String18

whose content is the first character of obj .19

d) Invoke the method write on the receiver with S as the argument.20

e) Return obj .21

15.2.20.5.13 IO#puts22

puts(*args)23

Visibility: public24

Behavior:25

a) If the length of args is 0, create a direct instance of the class String whose content is a26

single character 0x0a and invoke the method write on the receiver with this instance27

as an argument.28

b) Otherwise, for each element E of args in the indexing order:29

267

1) If E is an instance of the class Array, for each element X of E in the indexing1

order:2

i) If X is the same object as E, i.e. if E contains itself, invoke the method3

write on the receiver with an instance of the class String, whose content is4

implementation-defined.5

ii) Otherwise, invoke the method write on the receiver with X as the argument.6

2) Otherwise:7

i) If E is nil, a conforming processor may create a direct instance of the class8

String whose content is “nil” and let E be the instance.9

ii) If E is not an instance of the class String, invoke the method to s on the E.10

If the resulting value is an instance of the class String, let E be the resulting11

value. Otherwise, the behavior is unspecified.12

iii) Invoke the method write on the receiver with E as the argument.13

iv) If the last character of E is not 0x0a, create a direct instance of the class14

String whose content is a single character 0x0a and invoke the method write15

on the receiver with this instance as an argument.16

c) Return an implementation-defined value.17

15.2.20.5.14 IO#read18

read(length =nil)19

Visibility: public20

Behavior:21

a) If the receiver is not readable, raise a direct instance of the class IOError.22

b) If the receiver has reached its end:23

1) If length is nil, create an empty instance of the class String and return that24

instance.25

2) If length is not nil, return nil.26

c) Otherwise:27

1) If length is nil, read characters from the receiver until the receiver reaches its end.28

2) If length is an instance of the class Integer, let N be the value of length. Other-29

wise, the behavior is unspecified.30

268

3) If N is smaller than 0, raise a direct instance of the class ArgumentError.1

4) Read bytes from the receiver until N bytes are read or the receiver reaches its end.2

d) Create a direct instance of the class String whose content is the sequence of characters3

read in Step c) and return this instance.4

15.2.20.5.15 IO#readchar5

readchar6

Visibility: public7

Behavior:8

a) If the receiver is not readable, raise a direct instance of the class IOError.9

b) If the receiver has reached its end, raise a direct instance of the class EOFError.10

c) Otherwise, read a character from the receiver. Return an instance of the class Object11

which represents the character.12

15.2.20.5.16 IO#readline13

readline14

Visibility: public15

Behavior:16

a) If the receiver is not readable, raise a direct instance of the class IOError.17

b) If the receiver has reached its end, raise a direct instance of the class EOFError.18

c) Otherwise, read characters from the receiver until 0x0a is read or the receiver reaches19

its end.20

d) Create a direct instance of the class String whose content is the sequence of characters21

read in Step c) and return this instance.22

15.2.20.5.17 IO#readlines23

readlines24

Visibility: public25

Behavior:26

269

a) If the receiver is not readable, raise a direct instance of the class IOError.1

b) Create an empty direct instance A of the class Array.2

c) If the receiver has reached to its end, return A.3

d) Otherwise, read characters from the receiver until 0x0a is read or the receiver reaches4

its end.5

e) Create a direct instance of the class String whose content is the sequence of characters6

read in Step d) and append this instance to A.7

f) Continue processing from Step c).8

15.2.20.5.18 IO#sync9

sync10

Visibility: public11

Behavior:12

a) If the receiver is closed, raise a direct instance of the class IOError.13

b) If the buffering flag of the receiver is true, return false. Otherwise, return true.14

15.2.20.5.19 IO#sync=15

sync =(bool)16

Visibility: public17

Behavior:18

a) If the receiver is closed, raise a direct instance of the class IOError.19

b) If bool is a trueish object, set the buffering flag of the receiver to false. If bool is a20

falseish object, set the buffering flag of the receiver to true.21

c) Return bool .22

15.2.20.5.20 IO#write23

write(str)24

Visibility: public25

270

Behavior:1

a) If str is an instance of the class String, let S be str .2

b) Otherwise, invoke the method to s on str , and let S be the resulting value. If S is not3

an instance of the class String, the behavior is unspecified.4

c) If S is empty, return an instance of the class Integer whose value is 0.5

d) If the receiver is not writable, raise a direct instance of the class IOError.6

e) Write all the characters in S to the stream which the receiver represents, preserving7

their order.8

f) Return an instance of the class Integer, whose value is implementation-defined.9

15.2.21 File10

15.2.21.1 General description11

Instances of the class File represent opened files.12

A conforming processor may raise an instance of the class SystemCallError during the execution13

of the methods of the class File if the underlying system reports an error.14

An instance of the class File has the following attribute:15

path: The sequence of characters which represents the location of the file. The correct16

syntax of paths is implementation-defined.17

15.2.21.2 Direct superclass18

The class IO19

15.2.21.3 Singleton methods20

15.2.21.3.1 File.exist?21

File.exist?(path)22

Visibility: public23

Behavior:24

a) If the file specified by path exists, return true.25

b) Otherwise, return false.26

15.2.21.4 Instance methods27

15.2.21.4.1 File#initialize28

271

initialize(path, mode ="r")1

Visibility: private2

Behavior:3

a) If path is not an instance of the class String, the behavior is unspecified.4

b) If mode is not an instance of the class String whose content is a single character “r”5

or “w”, the behavior is unspecified.6

c) Open the file specified by path in an implementation-defined way, and associate it with7

the receiver.8

d) Set the path of the receiver to the content of path.9

e) Set the openness flag and the buffering flag of the receiver to true.10

f) Set the readability flag and the writability flag of the receiver as follows:11

1) If mode is an instance of the class String whose content is a single character “r”,12

set the readability flag of the receiver to true and set the writability flag of the13

receiver to false.14

2) If mode is an instance of the class String whose content is a single character “w”,15

set the readability flag of the receiver to false and set the writability flag of the16

receiver to true.17

g) Return an implementation-defined value.18

15.2.21.4.2 File#path19

path20

Visibility: public21

Behavior: The method creates a direct instance of the class String whose content is the22

path of the receiver, and returns this instance.23

15.2.22 Exception24

15.2.22.1 General description25

Instances of the class Exception represent exceptions. The class Exception is a superclass of26

all the other exception classes.27

Instances of the class Exception have the following attribute.28

message: An object returned by the method to s (see 15.2.22.5.3).29

272

When the method clone (see 15.3.1.3.8) or the method dup (see 15.3.1.3.9) of the class Kernel1

is invoked on an instance of the class Exception, the message attribute shall be copied from the2

receiver to the resulting value.3

15.2.22.2 Direct superclass4

The class Object5

15.2.22.3 Built-in exception classes6

This document defines several built-in subclasses of the class Exception. Figure 1 shows the7

list of these subclasses and their class hierarchy. Instances of these built-in subclasses are raised8

in various erroneous conditions as described in this document. The class hierarchy shown in9

Figure 1 is used to handle an exception (see Clause 14).10

Figure 1 – The exception class hierarchy

Exception

StandardError

ArgumentError

LocalJumpError

RangeError

RegexpError

RuntimeError

TypeError

ZeroDivisionError

NameError

NoMethodError

IndexError

IOError

EOFError

SystemCallError

ScriptError

SyntaxError

LoadError

15.2.22.4 Singleton methods11

15.2.22.4.1 Exception.exception12

Exception.exception(*args, &block)13

Visibility: public14

Behavior: Same as the method new (see 15.2.3.3.3).15

273

15.2.22.5 Instance methods1

15.2.22.5.1 Exception#exception2

exception(*string)3

Visibility: public4

Behavior:5

a) If the length of string is 0, return the receiver.6

b) If the length of string is 1:7

1) If the only argument is the same object as the receiver, return the receiver.8

2) Otherwise let M be the argument.9

i) Create a direct instance of the class of the receiver. Let E be the instance.10

ii) Set the message attribute of E to M.11

iii) Return E.12

c) If the length of string is larger than 1, raise a direct instance of the class ArgumentError.13

15.2.22.5.2 Exception#message14

message15

Visibility: public16

Behavior:17

a) Invoke the method to s on the receiver with no arguments.18

b) Return the resulting value of the invocation.19

15.2.22.5.3 Exception#to s20

to s21

Visibility: public22

Behavior:23

a) Let M be the message attribute of the receiver.24

274

b) If M is nil, return an implementation-defined value.1

c) If M is not an instance of the class String, the behavior is unspecified.2

d) Otherwise, return M.3

15.2.22.5.4 Exception#initialize4

initialize(message =nil)5

Visibility: private6

Behavior:7

a) Set the message attribute of the receiver to message.8

b) Return an implementation-defined value.9

15.2.23 StandardError10

15.2.23.1 General description11

Instances of the class StandardError represent standard errors, which can be handled in a12

rescue-clause without a exception-class-list (see 11.5.2.5).13

15.2.23.2 Direct superclass14

The class Exception15

15.2.24 ArgumentError16

15.2.24.1 General description17

Instances of the class ArgumentError represent argument errors.18

15.2.24.2 Direct superclass19

The class StandardError20

15.2.25 LocalJumpError21

Instances of the class LocalJumpError represent errors which occur while evaluating blocks and22

jump-expressions.23

15.2.25.1 Direct superclass24

The class StandardError25

15.2.25.2 Instance methods26

15.2.25.2.1 LocalJumpError#exit value27

275

exit value1

Visibility: public2

Behavior: The method returns the value of the instance variable @exit value of the3

receiver.4

15.2.25.2.2 LocalJumpError#reason5

reason6

Visibility: public7

Behavior: The method returns the value of the instance variable @reason of the receiver.8

15.2.26 RangeError9

15.2.26.1 General description10

Instances of the class RangeError represent range errors.11

15.2.26.2 Direct superclass12

The class StandardError13

15.2.27 RegexpError14

15.2.27.1 General description15

Instances of the class ArgumentError represent regular expression errors.16

15.2.27.2 Direct superclass17

The class StandardError18

15.2.28 RuntimeError19

15.2.28.1 General description20

Instances of the class RuntimeError represent runtime errors, which are raised by the method21

raise of the class Kernel by default (see 15.3.1.2.12).22

15.2.28.2 Direct superclass23

The class StandardError24

15.2.29 TypeError25

15.2.29.1 General description26

Instances of the class TypeError represent type errors.27

276

15.2.29.2 Direct superclass1

The class StandardError2

15.2.30 ZeroDivisionError3

15.2.30.1 General description4

Instances of the class ZeroDivisionError represent zero division errors.5

15.2.30.2 Direct superclass6

The class StandardError7

15.2.31 NameError8

Instances of the class NameError represent errors which occur while resolving names to values.9

Instances of the class NameError have the following attribute.10

name: The name a reference to which causes this exception to be raised.11

When the method clone (see 15.3.1.3.8) or the method dup (see 15.3.1.3.9) of the class Kernel12

is invoked on an instance of the class NameError, the name attribute shall be copied from the13

receiver to the resulting value.14

15.2.31.1 Direct superclass15

The class StandardError16

15.2.31.2 Instance methods17

15.2.31.2.1 NameError#name18

name19

Visibility: public20

Behavior: The method returns the name attribute of the receiver.21

15.2.31.2.2 NameError#initialize22

initialize(message =nil, name =nil)23

Visibility: public24

Behavior:25

a) Set the name attribute of the receiver to the name.26

277

b) Invoke the method initialize defined in the class Exception, which is a superclass of1

the class NameError, as if a super-with-argument were evaluated with a list of arguments2

which contains only message as the value of the argument-without-parentheses of the3

super-with-argument.4

c) Return an implementation-defined value.5

15.2.32 NoMethodError6

Instances of the class NoMethodError represent errors which occur while invoking methods which7

do not exist or which cannot be invoked.8

Instances of the class NoMethodError have attributes called name (see 15.2.31) and arguments.9

The values of these attributes are set in the method initialize (see 15.2.32.2.2).10

When the method clone (see 15.3.1.3.8) or the method dup (see 15.3.1.3.9) of the class Kernel11

is invoked on an instance of the class NoMethodError, those attributes shall be copied from the12

receiver to the resulting value.13

15.2.32.1 Direct superclass14

The class NameError15

15.2.32.2 Instance methods16

15.2.32.2.1 NoMethodError#args17

args18

Visibility: public19

Behavior: The method returns the value of the arguments attribute of the receiver.20

15.2.32.2.2 NoMethodError#initialize21

initialize(message =nil, name =nil, args =nil)22

Visibility: private23

Behavior:24

a) Set the arguments attribute of the receiver to the args.25

b) Perform all the steps of the method initialize described in 15.2.31.2.2.26

c) Return an implementation-defined value.27

278

15.2.33 IndexError1

15.2.33.1 General description2

Instances of the class IndexError represent index errors.3

15.2.33.2 Direct superclass4

The class StandardError5

15.2.34 IOError6

15.2.34.1 General description7

Instances of the class IOError represent input/output errors.8

15.2.34.2 Direct superclass9

The class StandardError10

15.2.35 EOFError11

15.2.35.1 General description12

Instances of the class EOFError represent errors which occur when a stream has reached its end.13

15.2.35.2 Direct superclass14

The class IOError15

15.2.36 SystemCallError16

15.2.36.1 General description17

Instances of the class SystemCallError represent errors which occur while invoking the methods18

of the class IO.19

15.2.36.2 Direct superclass20

The class StandardError21

15.2.37 ScriptError22

15.2.37.1 General description23

Instances of the class ScriptError represent programming errors such as syntax errors and24

loading errors.25

15.2.37.2 Direct superclass26

The class Exception27

279

15.2.38 SyntaxError1

15.2.38.1 General description2

Instances of the class SyntaxError represent syntax errors.3

15.2.38.2 Direct superclass4

The class ScriptError5

15.2.39 LoadError6

15.2.39.1 General description7

Instances of the class LoadError represent errors which occur while loading external programs8

(see 15.3.1.2.13).9

15.2.39.2 Direct superclass10

The class ScriptError11

15.3 Built-in modules12

15.3.1 Kernel13

15.3.1.1 General description14

The module Kernel is included in the class Object. Unless overridden, instance methods defined15

in the module Kernel can be invoked on any instance of the class Object.16

15.3.1.2 Singleton methods17

15.3.1.2.1 Kernel.‘18

Kernel.‘(string)19

Visibility: public20

Behavior: The method ‘ is invoked in the form described in 8.7.6.3.7.21

The method ‘ executes an external command corresponding to string . The external com-22

mand executed by the method is implementation-defined.23

When the method is invoked, take the following steps:24

a) If string is not an instance of the class String, the behavior is unspecified.25

b) Execute the command which corresponds to the content of string . Let R be the output26

of the command.27

c) Create a direct instance of the class String whose content is R, and return the instance.28

280

15.3.1.2.2 Kernel.block given?1

Kernel.block given?2

Visibility: public3

Behavior:4

a) If the top of [block] is block-not-given, return false.5

b) Otherwise, return true.6

15.3.1.2.3 Kernel.eval7

Kernel.eval(string)8

Visibility: public9

Behavior:10

a) If string is not an instance of the class String, the behavior is unspecified.11

b) Parse the content of the string as a program (see 10.1). If it fails, raise a direct instance12

of the class SyntaxError.13

c) Evaluate the program (see 10.1) within the execution context as it exists just before14

this method invoked. Let V be the resulting value of the evaluation.15

d) Return V.16

In Step c), the local variable scope which corresponds to the program is considered as a17

local variable scope which corresponds to a block in 9.2 d) 1).18

EXAMPLE 1 The following program prints “123”.19

x = 12320

Kernel.eval("print x")21

EXAMPLE 2 The following program raises an exception.22

Kernel.eval("x = 123") # the scope of x is the program "x = 123"。23

print x # x is undefined here.24

15.3.1.2.4 Kernel.global variables25

Kernel.global variables26

Visibility: public27

281

Behavior: The method returns a new direct instance of the class Array which consists of1

names of all the global variables. These names are represented by direct instances of either2

the class String or the class Symbol. Which of those classes is chosen is implementation-3

defined.4

15.3.1.2.5 Kernel.iterator?5

Kernel.iterator?6

Visibility: public7

Behavior: Same as the method Kernel.block given? (see 15.3.1.2.2).8

15.3.1.2.6 Kernel.lambda9

Kernel.lambda(&block)10

Visibility: public11

Behavior: The method creates an instance of the class Proc as Proc.new does (see 15.2.17.3.1).12

However, the way in which block is evaluated differs from the one described in 11.3.3 except13

when block is called by a yield-expression.14

The differences are as follows.15

a) Before 11.3.3 d), the number of arguments is checked as follows:16

1) Let A be the list of arguments passed to the block. Let Na be the length of A.17

2) If the block-parameter-list is of the form left-hand-side, and if Na is not 1, the18

behavior is unspecified.19

3) If the block-parameter-list is of the form multiple-left-hand-side:20

i) If the multiple-left-hand-side is not of the form grouped-left-hand-side or packing-21

left-hand-side:22

I) Let Np be the number of multiple-left-hand-side-items of the multiple-23

left-hand-side.24

II) If Na < Np, raise a direct instance of the class ArgumentError.25

III) If a packing-left-hand-side is omitted, and if Na > Np, raise a direct26

instance of the class ArgumentError.27

ii) If the multiple-left-hand-side is of the form grouped-left-hand-side, and if Na28

is not 1, the behavior is unspecified.29

282

b) In 11.3.3 e), when the evaluation of the block associated with a lambda invocation is1

terminated by a return-expression or break-expression, the execution context is restored2

to Eo (i.e. the saved execution context), and the evaluation of the lambda invocation3

is terminated.4

The value of the lambda invocation is determined as follows:5

1) If the jump-argument of the return-expression or the break-expression is present,6

the value of the lambda invocation is the value of the jump-argument.7

2) Otherwise, the value of the lambda invocation is nil.8

15.3.1.2.7 Kernel.local variables9

Kernel.local variables10

Visibility: public11

Behavior: The method returns a new direct instance of the class Array which contains all12

the names of local variable bindings which meet the following conditions.13

� The name of the binding is of the form local-variable-identifier.14

� The binding can be resolved in the scope of local variables which includes the point of15

invocations of this method by the process described in 9.2.16

In the instance of the class Array returned by the method, names of the local variables are17

represented by instances of either the class String or the class Symbol. Which of those18

classes is chosen is implementation-defined.19

15.3.1.2.8 Kernel.loop20

Kernel.loop(&block)21

Visibility: public22

Behavior:23

a) If block is not given, the behavior is unspecified.24

b) Otherwise, repeat calling block .25

15.3.1.2.9 Kernel.p26

Kernel.p(*args)27

Visibility: public28

283

Behavior:1

a) For each element E of args, in the indexing order, take the following steps:2

1) Invoke the method inspect (see 15.3.1.3.17) on E with no arguments and let X3

be the resulting value of this invocation.4

2) If X is not an instance of the class String, the behavior is unspecified.5

3) Invoke the method write(see 15.2.20.5.20) on Object::STDOUT with X as the6

argument.7

4) Invoke the method write on Object::STDOUT with an argument, which is a new8

direct instance of the class String whose content is a single character 0x0a.9

b) Return an implementation-defined value.10

15.3.1.2.10 Kernel.print11

Kernel.print(*args)12

Visibility: public13

Behavior: Invoke the method print of the class IO (see 15.2.20.5.11) on Object::STDOUT14

with the same arguments, and return the resulting value.15

15.3.1.2.11 Kernel.puts16

Kernel.puts(*args)17

Visibility: public18

Behavior: Invoke the method puts of the class IO (see 15.2.20.5.13) on Object::STDOUT19

with the same arguments, and return the resulting value.20

15.3.1.2.12 Kernel.raise21

Kernel.raise(*args)22

Visibility: public23

Behavior:24

a) If the length of args is larger than 2, the behavior is unspecified.25

b) If the length of args is 0:26

284

1) If the location of the method invocation is within an operator-expression2 of an1

assignment-with-rescue-modifier, a fallback-statement-of-rescue-modifier-statement,2

or a rescue-clause, let E be the current exception (see 14.3).3

2) Otherwise, invoke the method new on the class RuntimeError with no argument.4

Let E be the resulting value.5

c) If the length of args is 1, let A be the only argument.6

1) If A is an instance of the class String, invoke the method new on the class7

RuntimeError with A as the only argument. Let E be the resulting instance.8

2) Otherwise, invoke the method exception on A. Let E be the resulting value.9

3) If E is not an instance of the class Exception, raise a direct instance of the class10

TypeError.11

d) If the length of args is 2, let F and S be the first and the second argument, respectively.12

1) Invoke the method exception on F with S as the only argument. Let E be the13

resulting value.14

2) If E is not an instance of the class Exception, raise a direct instance of the class15

TypeError.16

e) Raise E.17

15.3.1.2.13 Kernel.require18

Kernel.require(string)19

Visibility: public20

Behavior: The method require evaluates the external program P corresponding to string .21

The way in which P is determined from string is implementation-defined.22

When the method is invoked, take the following steps:23

a) If string is not an instance of the class String, the behavior is unspecified.24

b) Search for the external program P corresponding to string .25

c) If the program does not exist, raise a direct instance of the class LoadError.26

d) If P is not of the form program (see 10.1), raise a direct instance of the class SyntaxError.27

e) Change the state of the execution context temporarily for the evaluation of P as follows:28

1) [self] contains only one object which is the object at the bottom of [self] in the29

current execution context.30

285

2) [class-module-list] contains only one list whose only element is the class Object.1

3) [default-method-visibility] contains only one visibility, which is the private visi-2

bility.3

4) All the other attributes of the execution context are empty stacks.4

f) Evaluate P within the execution context set up in Step e).5

g) Restore the state of the execution context as it is just before Step e), even when an6

exception is raised and not handled during the evaluation of P.7

NOTE The evaluation of P may affect the restored execution context if it changes the at-8

tributes of objects in the original execution context.9

h) Unless an exception is raised and not handled in Step f), return true.10

15.3.1.3 Instance methods11

15.3.1.3.1 Kernel#==12

= =(other)13

Visibility: public14

Behavior:15

a) If the receiver and other are the same object, return true.16

b) Otherwise, return false.17

If the class Object is not the root of the class inheritance tree, the method == shall be defined18

in the class which is the root of the class inheritance tree instead of in the module Kernel.19

15.3.1.3.2 Kernel#===20

= = =(other)21

Visibility: public22

Behavior:23

a) If the receiver and other are the same object, return true.24

b) Otherwise, invoke the method == on the receiver with other as the only argument. Let25

V be the resulting value.26

c) If V is a trueish object, return true. Otherwise, return false.27

286

15.3.1.3.3 Kernel# id1

id2

Visibility: public3

Behavior: Same as the method object id (see 15.3.1.3.33).4

15.3.1.3.4 Kernel# send5

send (symbol, *args, &block)6

Visibility: public7

Behavior: Same as the method send (see 15.3.1.3.44).8

If the class Object is not the root of the class inheritance tree, the method send shall be9

defined in the class which is the root of the class inheritance tree instead of in the module10

Kernel.11

15.3.1.3.5 Kernel#‘12

‘(string)13

Visibility: private14

Behavior: Same as the method Kernel.‘ (see 15.3.1.2.1).15

15.3.1.3.6 Kernel#block given?16

block given?17

Visibility: private18

Behavior: Same as the method Kernel.block given? (see 15.3.1.2.2).19

15.3.1.3.7 Kernel#class20

class21

Visibility: public22

Behavior: The method returns the class of the receiver.23

287

15.3.1.3.8 Kernel#clone1

clone2

Visibility: public3

Behavior:4

a) If the receiver is an instance of one of the following classes: NilClass, TrueClass,5

FalseClass, Integer, Float, or Symbol, then raise a direct instance of the class6

TypeError.7

b) Create a direct instance of the class of the receiver which has no bindings of instance8

variables. Let O be the newly created instance.9

c) For each binding B of the instance variables of the receiver, create a variable binding10

with the same name and value as B in the set of bindings of instance variables of O.11

d) If the receiver is associated with a singleton class, let Eo be the singleton class, and12

take the following steps:13

1) Create a singleton class whose direct superclass is the direct superclass of Eo. Let14

En be the singleton class.15

2) For each binding Bv1 of the constants of Eo, create a variable binding with the16

same name and value as Bv1 in the set of bindings of constants of En.17

3) For each binding Bv2 of the class variables of Eo, create a variable binding with18

the same name and value as Bv2 in the set of bindings of class variables of En.19

4) For each binding Bm of the instance methods of Eo, create a method binding with20

the same name and value as Bm in the set of bindings of instance methods of En.21

5) Associate O with En.22

e) Invoke the method initialize copy on O with the receiver as the argument.23

f) Return O.24

15.3.1.3.9 Kernel#dup25

dup26

Visibility: public27

Behavior:28

a) If the receiver is an instance of one of the following classes: NilClass, TrueClass,29

FalseClass, Integer, Float, or Symbol, then raise a direct instance of the class30

TypeError.31

288

b) Create a direct instance of the class of the receiver which has no bindings of instance1

variables. Let O be the newly created instance.2

c) For each binding B of the instance variables of the receiver, create a variable binding3

with the same name and value as B in the set of bindings of instance variables of O.4

d) Invoke the method initialize copy on O with the receiver as the argument.5

e) Return O.6

15.3.1.3.10 Kernel#eql?7

eql?(other)8

Visibility: public9

Behavior: Same as the method == (see 15.3.1.3.1).10

15.3.1.3.11 Kernel#equal?11

equal?(other)12

Visibility: public13

Behavior: Same as the method == (see 15.3.1.3.1).14

If the class Object is not the root of the class inheritance tree, the method equal? shall be15

defined in the class which is the root of the class inheritance tree instead of in the module16

Kernel.17

15.3.1.3.12 Kernel#eval18

eval(string)19

Visibility: private20

Behavior: Same as the method Kernel.eval (see 15.3.1.2.3).21

15.3.1.3.13 Kernel#extend22

extend(*module list)23

Visibility: public24

Behavior: Let R be the receiver of the method.25

289

a) If the length of module list is 0, raise a direct instance of the class ArgumentError.1

b) For each element A of module list , take the following steps:2

1) If A is not an instance of the class Module, raise a direct instance of the class3

TypeError.4

2) If A is an instance of the class Class, raise a direct instance of the class TypeError.5

3) Invoke the method extend object on A with R as the only argument.6

4) Invoke the method extended on A with R as the only argument.7

c) Return R.8

15.3.1.3.14 Kernel#global variables9

global variables10

Visibility: private11

Behavior: Same as the method Kernel.global variables (see 15.3.1.2.4).12

15.3.1.3.15 Kernel#hash13

hash14

Visibility: public15

Behavior: The method returns an instance of the class Integer. When invoked on the16

same object, the method shall always return an instance of the class Integer whose value17

is the same.18

When a conforming processor overrides the method eql? (see 15.3.1.3.10), it shall override19

the method hash in the same class or module in which the method eql? is overridden20

in such a way that, if an invocation of the method eql? on an object with an argument21

returns a trueish object, invocations of the method hash on the object and the argument22

return the instances of the class Integer with the same value.23

15.3.1.3.16 Kernel#initialize copy24

initialize copy(original)25

Visibility: private26

Behavior: The method initialize copy is invoked when an object is created by the27

method clone (see 15.3.1.3.8) or the method dup (see 15.3.1.3.9).28

When the method is invoked, take the following steps:29

290

a) If the classes of the receiver and the original are not the same class, raise a direct1

instance of the class TypeError.2

b) Return an implementation-defined value.3

15.3.1.3.17 Kernel#inspect4

inspect5

Visibility: public6

Behavior: The method returns a new direct instance of the class String, the content of7

which represents the state of the receiver. The content of the resulting instance of the class8

String is implementation-defined.9

15.3.1.3.18 Kernel#instance eval10

instance eval(string = nil, &block)11

Visibility: public12

Behavior:13

a) If the receiver is an instance of the class Integer or the class Symbol, or if the receiver14

is one of nil, true, or false, then the behavior is unspecified.15

b) If the receiver is not associated with a singleton class, create a new singleton class. Let16

M be the newly created singleton class.17

c) If the receiver is associated with a singleton class, let M be that singleton class.18

d) Take steps b) through the last step of the method class eval of the class Module (see19

15.2.2.4.15).20

If the class Object is not the root of the class inheritance tree, the method instance eval shall21

be defined in the class which is the root of the class inheritance tree instead of in the module22

Kernel.23

15.3.1.3.19 Kernel#instance of?24

instance of?(module)25

Visibility: public26

Behavior: Let C be the class of the receiver.27

a) If module is not an instance of the class Class or the class Module, raise a direct28

instance of the class TypeError.29

291

b) If module and C are the same object, return true.1

c) Otherwise, return false.2

15.3.1.3.20 Kernel#instance variable defined?3

instance variable defined?(symbol)4

Visibility: public5

Behavior:6

a) Let N be the name designated by symbol .7

b) If N is not of the form instance-variable-identifier, raise a direct instance of the class8

NameError which has symbol as its name attribute.9

c) If a binding of an instance variable with name N exists in the set of bindings of instance10

variables of the receiver, return true.11

d) Otherwise, return false.12

15.3.1.3.21 Kernel#instance variable get13

instance variable get(symbol)14

Visibility: public15

Behavior:16

a) Let N be the name designated by symbol .17

b) If N is not of the form instance-variable-identifier, raise a direct instance of the class18

NameError which has symbol as its name attribute.19

c) If a binding of an instance variable with name N exists in the set of bindings of instance20

variables of the receiver, return the value of the binding.21

d) Otherwise, return nil.22

15.3.1.3.22 Kernel#instance variable set23

instance variable set(symbol, obj)24

Visibility: public25

Behavior:26

292

a) Let N be the name designated by symbol .1

b) If N is not of the form instance-variable-identifier, raise a direct instance of the class2

NameError which has symbol as its name attribute.3

c) If a binding of an instance variable with name N exists in the set of bindings of instance4

variables of the receiver, replace the value of the binding with obj .5

d) Otherwise, create a variable binding with name N and value obj in the set of bindings6

of instance variables of the receiver.7

e) Return obj .8

15.3.1.3.23 Kernel#instance variables9

instance variables10

Visibility: public11

Behavior: The method returns a new direct instance of the class Array which consists of12

names of all the instance variables of the receiver. These names are represented by direct13

instances of either the class String or the class Symbol. Which of those classes is chosen is14

implementation-defined.15

15.3.1.3.24 Kernel#is a?16

is a?(module)17

Visibility: public18

Behavior:19

a) If module is not an instance of the class Class or the class Module, raise a direct20

instance of the class TypeError.21

b) Let C be the class of the receiver.22

c) If module is an instance of the class Class and one of the following conditions holds,23

return true.24

� The module and C are the same object.25

� The module is a superclass of C.26

� The module and the singleton class of the receiver are the same object.27

d) If module is an instance of the class Module and is included in C or one of the super-28

classes of C, return true.29

e) Otherwise, return false.30

293

15.3.1.3.25 Kernel#iterator?1

iterator?2

Visibility: private3

Behavior: Same as the method Kernel.iterator? (see 15.3.1.2.5).4

15.3.1.3.26 Kernel#kind of?5

kind of?(module)6

Visibility: public7

Behavior: Same as the method is a? (see 15.3.1.3.24).8

15.3.1.3.27 Kernel#lambda9

lambda(&block)10

Visibility: private11

Behavior: Same as the method Kernel.lambda (see 15.3.1.2.6).12

15.3.1.3.28 Kernel#local variables13

local variables14

Visibility: private15

Behavior: Same as the method Kernel.local variables (see 15.3.1.2.7).16

15.3.1.3.29 Kernel#loop17

loop(&block)18

Visibility: private19

Behavior: Same as the method Kernel.loop (see 15.3.1.2.8).20

15.3.1.3.30 Kernel#method missing21

294

method missing(symbol, *args)1

Visibility: private2

Behavior:3

a) If symbol is not an instance of the class Symbol, the behavior is unspecified.4

b) Otherwise, raise a direct instance of the class NoMethodError which has symbol as5

its name attribute and args as its arguments attribute. A direct instance of the6

class NameError which has symbol as its name attribute may be raised instead of7

NoMethodError if the method is invoked in 13.3.3 e) during evaluation of a local-8

variable-identifier as a method invocation.9

If the class Object is not the root of the class inheritance tree, the method method missing10

shall be defined in the class which is the root of the class inheritance tree instead of in the11

module Kernel.12

15.3.1.3.31 Kernel#methods13

methods(all =true)14

Visibility: public15

Behavior: Let C be the class of the receiver.16

a) If all is a trueish object, invoke the method instance methods on C with no arguments17

(see 15.2.2.4.33), and return the resulting value.18

b) If all is a falseish object, invoke the method singleton methods on the receiver with19

false as the only argument (see 15.3.1.3.45), and return the resulting value.20

15.3.1.3.32 Kernel#nil?21

nil?22

Visibility: public23

Behavior:24

a) If the receiver is nil, return true.25

b) Otherwise, return false.26

15.3.1.3.33 Kernel#object id27

295

object id1

Visibility: public2

Behavior: The method returns an instance of the class Integer with the same value3

whenever it is invoked on the same object. When invoked on two distinct objects, the4

method returns an instance of the class Integer with different value for each invocation.5

15.3.1.3.34 Kernel#p6

p(*args)7

Visibility: private8

Behavior: Same as the method Kernel.p (see 15.3.1.2.9).9

15.3.1.3.35 Kernel#print10

print(*args)11

Visibility: private12

Behavior: Same as the method Kernel.print (see 15.3.1.2.10).13

15.3.1.3.36 Kernel#private methods14

private methods(all =true)15

Visibility: public16

Behavior:17

a) Let MV be the private visibility.18

b) Create an empty direct instance A of the class Array.19

c) If the receiver is associated with a singleton class, let C be the singleton class.20

d) Let I be the set of bindings of instance methods of C.21

For each binding B of I, let N and V be the name and the value of B respectively, and22

take the following steps:23

1) If V is undef, or the visibility of V is not MV, skip the next two steps.24

296

2) Let S be either a new direct instance of the class String whose content is N or a1

direct instance of the class Symbol whose name is N. Which is chosen as the value2

of S is implementation-defined.3

3) Unless A contains the element of the same name (if S is an instance of the class4

Symbol) or the same content (if S is an instance of the class String) as S, append5

S to A.6

e) For each module M in included module list of C, take step d), assuming that C in that7

step to be M.8

f) Let new C be the class of the receiver, and take step d).9

g) If all is a trueish object:10

1) Take step e).11

2) If C does not have a direct superclass, return A.12

3) Let new C be the direct superclass of current C.13

4) Take step d), and then, repeat from Step g) 1).14

h) Return A.15

15.3.1.3.37 Kernel#protected methods16

protected methods(all =true)17

Visibility: public18

Behavior: Same as the method private methods (see 15.3.1.3.36), except to let MV be19

the protected visibility in 15.3.1.3.36 a).20

15.3.1.3.38 Kernel#public methods21

public methods(all =true)22

Visibility: public23

Behavior: Same as the method private methods (see 15.3.1.3.36), except to let MV be24

the public visibility in 15.3.1.3.36 a).25

15.3.1.3.39 Kernel#puts26

297

puts(*args)1

Visibility: private2

Behavior: Same as the method Kernel.puts (see 15.3.1.2.11).3

15.3.1.3.40 Kernel#raise4

raise(*args)5

Visibility: private6

Behavior: Same as the method Kernel.raise (see 15.3.1.2.12).7

15.3.1.3.41 Kernel#remove instance variable8

remove instance variable(symbol)9

Visibility: private10

Behavior:11

a) Let N be the name designated by symbol .12

b) If N is not of the form instance-variable-identifier, raise a direct instance of the class13

NameError which has symbol as its name attribute.14

c) If a binding of an instance variable with name N exists in the set of bindings of instance15

variables of the receiver, let V be the value of the binding.16

1) Remove the binding from the set of bindings of instance variables of the receiver.17

2) Return V.18

d) Otherwise, raise a direct instance of the class NameError which has symbol as its name19

attribute.20

15.3.1.3.42 Kernel#require21

require(*args)22

Visibility: private23

Behavior: Same as the method Kernel.require (see 15.3.1.2.13).24

298

15.3.1.3.43 Kernel#respond to?1

respond to?(symbol, include private =false)2

Visibility: public3

Behavior:4

a) Let N be the name designated by symbol .5

b) Search for a binding of an instance method named N starting from the receiver of the6

method as described in 13.3.4.7

c) If a binding is found, let V be the value of the binding.8

1) If V is undef, return false.9

2) If the visibility of V is private:10

i) If include private is a trueish object, return true.11

ii) Otherwise, return false.12

3) Otherwise, return true.13

d) Otherwise, return false.14

15.3.1.3.44 Kernel#send15

send(symbol, *args, &block)16

Visibility: public17

Behavior:18

a) Let N be the name designated by symbol .19

b) Invoke the method named N on the receiver with args as arguments and block as the20

block, if any.21

c) Return the resulting value of the invocation.22

15.3.1.3.45 Kernel#singleton methods23

singleton methods(all =true)24

Visibility: public25

299

Behavior: Let E be the singleton class of the receiver.1

a) Create an empty direct instance A of the class Array.2

b) Let I be the set of bindings of instance methods of E.3

For each binding B of I, let N and V be the name and the value of B respectively, and4

take the following steps:5

1) If V is undef, or the visibility of V is private, skip the next two steps.6

2) Let S be either a new direct instance of the class String whose content is N or a7

direct instance of the class Symbol whose name is N. Which is chosen as the value8

of S is implementation-defined.9

3) Unless A contains the element of the same name (if S is an instance of the class10

Symbol) or the same content (if S is an instance of the class String), append S11

to A.12

c) If all is a trueish object, for each module M in included module list of E, take step b),13

assuming that E in that step to be M.14

d) Return A.15

15.3.1.3.46 Kernel#to s16

to s17

Visibility: public18

Behavior: The method returns a newly created direct instance of the class String, the19

content of which is the string representation of the receiver. The content of the resulting20

instance of the class String is implementation-defined.21

15.3.2 Enumerable22

15.3.2.1 General description23

The module Enumerable provides methods which iterates over the elements of the object using24

the method each.25

In the following description of the methods of the module Enumerable, an element of the26

receiver means one of the values which is yielded by the method each.27

15.3.2.2 Instance methods28

15.3.2.2.1 Enumerable#all?29

300

all?(&block)1

Visibility: public2

Behavior:3

a) Invoke the method each on the receiver.4

b) For each element X which the method each yields:5

1) If block is given, call block with X as the argument.6

If this call results in a falseish object, return false.7

2) If block is not given, and X is a falseish object, return false.8

c) Return true.9

15.3.2.2.2 Enumerable#any?10

any?(&block)11

Visibility: public12

Behavior:13

a) Invoke the method each on the receiver.14

b) For each element X which each yields:15

1) If block is given, call block with X as the argument.16

If this call results in a trueish object, return true.17

2) If block is not given, and X is a trueish object, return true.18

c) Return false.19

15.3.2.2.3 Enumerable#collect20

collect(&block)21

Visibility: public22

Behavior:23

a) If block is not given, the behavior is unspecified.24

301

b) Create an empty direct instance A of the class Array.1

c) Invoke the method each on the receiver.2

d) For each element X which each yields, call block with X as the argument and append3

the resulting value to A.4

e) Return A.5

15.3.2.2.4 Enumerable#detect6

detect(ifnone =nil, &block)7

Visibility: public8

Behavior:9

a) If block is not given, the behavior is unspecified.10

b) Invoke the method each on the receiver.11

c) For each element X which each yields, call block with X as the argument. If this call12

results in a trueish object, return X.13

d) Return ifnone.14

15.3.2.2.5 Enumerable#each with index15

each with index(&block)16

Visibility: public17

Behavior:18

a) If block is not given, the behavior is unspecified.19

b) Let i be 0.20

c) Invoke the method each on the receiver.21

d) For each element X which each yields:22

1) Call block with X and i as the arguments.23

2) Increase i by 1.24

e) Return the receiver.25

302

15.3.2.2.6 Enumerable#entries1

entries2

Visibility: public3

Behavior:4

a) Create an empty direct instance A of the class Array.5

b) Invoke the method each on the receiver.6

c) For each element X which each yields, append X to A.7

d) Return A.8

15.3.2.2.7 Enumerable#find9

find(ifnone =nil, &block)10

Visibility: public11

Behavior: Same as the method detect (see 15.3.2.2.4).12

15.3.2.2.8 Enumerable#find all13

find all(&block)14

Visibility: public15

Behavior:16

a) If block is not given, the behavior is unspecified.17

b) Create an empty direct instance A of the class Array.18

c) Invoke the method each on the receiver.19

d) For each element X which each yields, call block with X as the argument. If this call20

results in a trueish object, append X to A.21

e) Return A.22

15.3.2.2.9 Enumerable#grep23

303

grep(pattern, &block)1

Visibility: public2

Behavior:3

a) Create an empty direct instance A of the class Array.4

b) Invoke the method each on the receiver.5

c) For each element X which each yields, invoke the method === on pattern with X as6

the argument.7

If this invocation results in a trueish object:8

1) If block is given, call block with X as the argument and append the resulting value9

to A.10

2) Otherwise, append X to A.11

d) Return A.12

15.3.2.2.10 Enumerable#include?13

include?(obj)14

Visibility: public15

Behavior:16

a) Invoke the method each on the receiver.17

b) For each element X which each yields, invoke the method == on X with obj as the18

argument. If this invocation results in a trueish object, return true.19

c) Return false.20

15.3.2.2.11 Enumerable#inject21

inject(*args, &block)22

Visibility: public23

Behavior:24

a) If block is not given, the behavior is unspecified.25

304

b) If the length of args is 2, the behavior is unspecified. If the length of args is larger1

than 2, raise a direct instance of the class ArgumentError.2

c) Invoke the method each on the receiver. If the method each does not yield any element,3

return nil.4

d) For each element X which each yields:5

1) If X is the first element, and the length of args is 0, let V be X.6

2) If X is the first element, and the length of args is 1, call block with two arguments,7

which are the only element of args and X. Let V be the resulting value of this call.8

3) If X is not the first element, call block with V and X as the arguments. Let new9

V be the resulting value of this call.10

e) Return V.11

15.3.2.2.12 Enumerable#map12

map(&block)13

Visibility: public14

Behavior: Same as the method collect (see 15.3.2.2.3).15

15.3.2.2.13 Enumerable#max16

max(&block)17

Visibility: public18

Behavior:19

a) Invoke the method each on the receiver.20

b) If the method each does not yield any elements, return nil.21

c) For each element X which the method each yields:22

1) If X is the first element, let V be X.23

2) Otherwise:24

i) If block is given:25

I) Call block with X and V as the arguments. Let D be the result of this26

call.27

305

II) If D is not an instance of the class Integer, the behavior is unspecified.1

III) If the value of D is larger than 0, let new V be X.2

ii) If block is not given:3

I) Invoke the method <=> on X with V as the argument. Let D be the4

result of this invocation.5

II) If D is not an instance of the class Integer, the behavior is unspecified.6

III) If the value of D is larger than 0, let new V be X.7

d) Return V.8

15.3.2.2.14 Enumerable#min9

min(&block)10

Visibility: public11

Behavior:12

a) Invoke the method each on the receiver.13

b) If the method each does not yield any elements, return nil.14

c) For each element X which the method each yields:15

1) If X is the first element, let V be X.16

2) Otherwise:17

i) If block is given:18

I) Call block with X and V as the arguments. Let D be the result of this19

call.20

II) If D is not an instance of the class Integer, the behavior is unspecified.21

III) If the value of D is smaller than 0, let new V be X.22

ii) If block is not given:23

I) Invoke the method <=> on X with V as the argument. Let D be the24

result of this invocation.25

II) If D is not an instance of the class Integer, the behavior is unspecified.26

III) If the value of D is smaller than 0, let new V be X.27

d) Return V.28

306

15.3.2.2.15 Enumerable#member?1

member?(obj)2

Visibility: public3

Behavior: Same as the method include? (see 15.3.2.2.10).4

15.3.2.2.16 Enumerable#partition5

partition(&block)6

Visibility: public7

Behavior:8

a) If block is not given, the behavior is unspecified.9

b) Create two empty direct instances of the class Array T and F.10

c) Invoke the method each on the receiver.11

d) For each element X which each yields, call block with X as the argument.12

If this call results in a trueish object, append X to T. If this call results in a falseish13

object, append X to F.14

e) Return a newly created an instance of the class Array, which contains only T and F15

in this order.16

15.3.2.2.17 Enumerable#reject17

reject(&block)18

Visibility: public19

Behavior:20

a) If block is not given, the behavior is unspecified.21

b) Create an empty direct instance A of the class Array.22

c) Invoke the method each on the receiver.23

d) For each element X which each yields, call block with X as the argument. If this call24

results in a falseish object, append X to A.25

e) Return A.26

307

15.3.2.2.18 Enumerable#select1

select(&block)2

Visibility: public3

Behavior: Same as the method find all (see 15.3.2.2.8).4

15.3.2.2.19 Enumerable#sort5

sort(&block)6

Visibility: public7

Behavior:8

a) Create an empty direct instance A of the class Array.9

b) Invoke the method each on the receiver.10

c) Insert all the elements which the method each yields into A. For any two elements Ei11

and Ej of A, the following condition shall hold:12

1) Let i and j be the index of Ei and Ej , respectively.13

2) If block is given:14

i) Suppose block is called with Ei and Ej as the arguments.15

ii) If this invocation does not result in an instance of the class Integer, the16

behavior is unspecified.17

iii) If this invocation results in an instance of the class Integer whose value is18

larger than 0, j shall be larger than i.19

iv) If this invocation results in an instance of the class Integer whose value is20

smaller than 0, i shall be larger than j.21

3) If block is not given:22

i) Suppose the method <=> is invoked on Ei with Ej as the argument.23

ii) If this invocation does not result in an instance of the class Integer, the24

behavior is unspecified.25

iii) If this invocation results in an instance of the class Integer whose value is26

larger than 0, j shall be larger than i.27

iv) If this invocation results in an instance of the class Integer whose value is28

smaller than 0, i shall be larger than j.29

308

d) Return A.1

15.3.2.2.20 Enumerable#to a2

to a3

Visibility: public4

Behavior: Same as the method entries (see 15.3.2.2.6).5

15.3.3 Comparable6

15.3.3.1 General description7

The module Comparable provides methods which compare the receiver and an argument using8

the method <=>.9

15.3.3.2 Instance methods10

15.3.3.2.1 Comparable#<11

<(other)12

Visibility: public13

Behavior:14

a) Invoke the method <=> on the receiver with other as the argument. Let I be the15

resulting value of this invocation.16

b) If I is not an instance of the class Integer, the behavior is unspecified.17

c) If the value of I is smaller than 0, return true. Otherwise, return false.18

15.3.3.2.2 Comparable#<=19

< =(other)20

Visibility: public21

Behavior:22

a) Invoke the method <=> on the receiver with other as the argument. Let I be the23

resulting value of this invocation.24

b) If I is not an instance of the class Integer, the behavior is unspecified.25

c) If the value of I is smaller than or equal to 0, return true. Otherwise, return false.26

309

15.3.3.2.3 Comparable#==1

= =(other)2

Visibility: public3

Behavior:4

a) Invoke the method <=> on the receiver with other as the argument. Let I be the5

resulting value of this invocation.6

b) If I is not an instance of the class Integer, the behavior is unspecified.7

c) If the value of I is 0, return true. Otherwise, return false.8

15.3.3.2.4 Comparable#>9

>(other)10

Visibility: public11

Behavior:12

a) Invoke the method <=> on the receiver with other as the argument. Let I be the13

resulting value of this invocation.14

b) If I is not an instance of the class Integer, the behavior is unspecified.15

c) If the value of I is larger than 0, return true. Otherwise, return false.16

15.3.3.2.5 Comparable#>=17

> =(other)18

Visibility: public19

Behavior:20

a) Invoke the method <=> on the receiver with other as the argument. Let I be the21

resulting value of this invocation.22

b) If I is not an instance of the class Integer, the behavior is unspecified.23

c) If the value of I is larger than or equal to 0, return true. Otherwise, return false.24

15.3.3.2.6 Comparable#between?25

310

between?(left, right)1

Visibility: public2

Behavior:3

a) Invoke the method <=> on the receiver with left as the argument. Let I1 be the resulting4

value of this invocation.5

1) If I1 is not an instance of the class Integer, the behavior is unspecified.6

2) If the value of I1 is smaller than 0, return false.7

b) Invoke the method <=> on the receiver with right as the argument. Let I2 be the8

resulting value of this invocation.9

1) If I2 is not an instance of the class Integer, the behavior is unspecified.10

2) If the value of I2 is larger than 0, return false. Otherwise, return true.11

311

	Contents
	Introduction
	Scope
	Normative references
	Conformance
	Terms and definitions
	Notational conventions
	General description
	Syntax
	General description
	Productions
	Syntactic term sequences
	Syntactic terms
	Conceptual names

	Semantics
	Attributes of execution contexts

	Fundamental concepts
	Objects
	Variables
	General description
	Instance variables

	Methods
	Blocks
	Classes, singleton classes, and modules
	General description
	Classes
	Singleton classes
	Inheritance
	Modules

	Boolean values

	Execution contexts
	General description
	The initial state

	Lexical structure
	General description
	Program text
	Line terminators
	Whitespace
	Comments
	End-of-program markers
	Tokens
	General description
	Keywords
	Identifiers
	Punctuators
	Operators
	Literals
	General description
	Numeric literals
	String literals
	General description
	Single quoted strings
	Double quoted strings
	Quoted non-expanded literal strings
	Quoted expanded literal strings
	Here documents
	External command execution

	Array literals
	Regular expression literals
	Symbol literals

	Scope of variables
	General description
	Scope of local variables
	Scope of global variables

	Program structure
	Program
	Compound statement

	Expressions
	General description
	Logical expressions
	General description
	Keyword logical expressions
	Logical NOT expressions
	Logical AND expressions
	Logical OR expressions

	Method invocation expressions
	General description
	Method arguments
	Blocks
	The JT1JY1super expression
	The JT1JY1yield expression

	Operator expressions
	General description
	Assignments
	General description
	Single assignments
	General description
	Single variable assignments
	Scoped constant assignments
	Single indexing assignments
	Single method assignments

	Abbreviated assignments
	General description
	Abbreviated variable assignments
	Abbreviated indexing assignments
	Abbreviated method assignments

	Multiple assignments
	Assignments with JT1JY1rescue modifiers

	Unary operator expressions
	General description
	The JT1JY1defined? expression

	Binary operator expressions

	Primary expressions
	General description
	Control structures
	General description
	Conditional expressions
	General description
	The JT1JY1if expression
	The JT1JY1unless expression
	The JT1JY1case expression
	Conditional operator expression

	Iteration expressions
	General description
	The JT1JY1while expression
	The JT1JY1until expression
	The JT1JY1for expression

	Jump expressions
	General description
	The JT1JY1return expression
	The JT1JY1break expression
	The JT1JY1next expression
	The JT1JY1redo expression
	The JT1JY1retry expression

	The JT1JY1begin expression

	Grouping expression
	Variable references
	General description
	Constants
	Scoped constants
	Global variables
	Class variables
	Instance variables
	Local variables or method invocations
	General description
	Determination of the type of local variable identifiers
	Local variables
	Method invocations

	Pseudo variables
	General description
	The JT1JY1nil expression
	The JT1JY1true expression and the JT1JY1false expression
	The JT1JY1self expression

	Object constructors
	Array constructor
	Hash constructor
	Range constructor

	Statements
	General description
	The expression statement
	The JT1JY1if modifier statement
	The JT1JY1unless modifier statement
	The JT1JY1while modifier statement
	The JT1JY1until modifier statement
	The JT1JY1rescue modifier statement

	Classes and modules
	Modules
	General description
	Module definition
	Module inclusion

	Classes
	General description
	Class definition
	Inheritance
	Instance creation

	Methods
	Method definition
	Method parameters
	Method invocation
	Method lookup
	Method visibility
	General description
	Public methods
	Private methods
	Protected methods
	Visibility change

	The JT1JY1alias statement
	The JT1JY1undef statement

	Singleton classes
	General description
	Singleton class definition
	Singleton method definition

	Exceptions
	General description
	Cause of exceptions
	Exception handling

	Built-in classes and modules
	General description
	Built-in classes
	Object
	General description
	Direct superclass
	Included modules
	Constants
	Instance methods
	Object#initialize

	Module
	General description
	Direct superclass
	Singleton methods
	Module.constants
	Module.nesting

	Instance methods
	Module#<
	Module#<=
	Module#<=>
	Module#==
	Module#===
	Module#>
	Module#>=
	Module#alias_method
	Module#ancestors
	Module#append_features
	Module#attr
	Module#attr_accessor
	Module#attr_reader
	Module#attr_writer
	Module#class_eval
	Module#class_variable_defined?
	Module#class_variable_get
	Module#class_variable_set
	Module#class_variables
	Module#const_defined?
	Module#const_get
	Module#const_missing
	Module#const_set
	Module#constants
	Module#extend_object
	Module#extended
	Module#include
	Module#include?
	Module#included
	Module#included_modules
	Module#initialize
	Module#initialize_copy
	Module#instance_methods
	Module#method_defined?
	Module#module_eval
	Module#private
	Module#protected
	Module#public
	Module#remove_class_variable
	Module#remove_const
	Module#remove_method
	Module#undef_method

	Class
	General description
	Direct superclass
	Instance methods
	Class#initialize
	Class#initialize_copy
	Class#new
	Class#superclass

	NilClass
	General description
	Direct superclass
	Instance methods
	NilClass#&
	NilClass#^
	NilClass#|
	NilClass#nil?
	NilClass#to_s

	TrueClass
	General description
	Direct superclass
	Instance methods
	TrueClass#&
	TrueClass#^
	TrueClass#to_s
	TrueClass#|

	FalseClass
	General description
	Direct superclass
	Instance methods
	FalseClass#&
	FalseClass#^
	FalseClass#to_s
	FalseClass#|

	Numeric
	General description
	Direct superclass
	Included modules
	Instance methods
	Numeric#+@
	Numeric#-@
	Numeric#abs
	Numeric#coerce

	Integer
	General description
	Direct superclass
	Instance methods
	Integer#+
	Integer#-
	Integer#*
	Integer#/
	Integer#%
	Integer#<=>
	Integer#==
	Integer#‾
	Integer#&
	Integer#|
	Integer#^
	Integer#<<
	Integer#>>
	Integer#ceil
	Integer#downto
	Integer#eql?
	Integer#floor
	Integer#hash
	Integer#next
	Integer#round
	Integer#succ
	Integer#times
	Integer#to_f
	Integer#to_i
	Integer#to_s
	Integer#truncate
	Integer#upto

	Float
	General description
	Direct superclass
	Instance methods
	Float#+
	Float#-
	Float#*
	Float#/
	Float#%
	Float#<=>
	Float#==
	Float#ceil
	Float#finite?
	Float#floor
	Float#infinite?
	Float#round
	Float#to_f
	Float#to_i
	Float#truncate

	String
	General description
	Direct superclass
	Included modules
	Upper-case and lower-case characters
	Instance methods
	String#*
	String#+
	String#<=>
	String#==
	String#=‾
	String#[]
	String#capitalize
	String#capitalize!
	String#chomp
	String#chomp!
	String#chop
	String#chop!
	String#downcase
	String#downcase!
	String#each_line
	String#empty?
	String#eql?
	String#gsub
	String#gsub!
	String#hash
	String#include?
	String#index
	String#initialize
	String#initialize_copy
	String#intern
	String#length
	String#match
	String#replace
	String#reverse
	String#reverse!
	String#rindex
	String#scan
	String#size
	String#slice
	String#split
	String#sub
	String#sub!
	String#to_i
	String#to_f
	String#to_s
	String#to_sym
	String#upcase
	String#upcase!

	Symbol
	General description
	Direct superclass
	Instance methods
	Symbol#===
	Symbol#id2name
	Symbol#to_s
	Symbol#to_sym

	Array
	General description
	Direct superclass
	Included modules
	Singleton methods
	Array.[]

	Instance methods
	Array#*
	Array#+
	Array#<<
	Array#[]
	Array#[]=
	Array#clear
	Array#collect!
	Array#concat
	Array#delete_at
	Array#each
	Array#each_index
	Array#empty?
	Array#first
	Array#index
	Array#initialize
	Array#initialize_copy
	Array#join
	Array#last
	Array#length
	Array#map!
	Array#pop
	Array#push
	Array#replace
	Array#reverse
	Array#reverse!
	Array#rindex
	Array#shift
	Array#size
	Array#slice
	Array#unshift

	Hash
	General description
	Direct superclass
	Included modules
	Instance methods
	Hash#==
	Hash#[]
	Hash#[]=
	Hash#clear
	Hash#default
	Hash#default=
	Hash#default_proc
	Hash#delete
	Hash#each
	Hash#each_key
	Hash#each_value
	Hash#empty?
	Hash#has_key?
	Hash#has_value?
	Hash#include?
	Hash#initialize
	Hash#initialize_copy
	Hash#key?
	Hash#keys
	Hash#length
	Hash#member?
	Hash#merge
	Hash#replace
	Hash#shift
	Hash#size
	Hash#store
	Hash#value?
	Hash#values

	Range
	General description
	Direct superclass
	Included modules
	Instance methods
	Range#==
	Range#===
	Range#begin
	Range#each
	Range#end
	Range#exclude_end?
	Range#first
	Range#include?
	Range#initialize
	Range#last
	Range#member?

	Regexp
	General description
	Direct superclass
	Constants
	Patterns
	Matching process
	Singleton methods
	Regexp.compile
	Regexp.escape
	Regexp.last_match
	Regexp.quote

	Instance methods
	Regexp#initialize
	Regexp#initialize_copy
	Regexp#==
	Regexp#===
	Regexp#=‾
	Regexp#casefold?
	Regexp#match
	Regexp#source

	MatchData
	General description
	Direct superclass
	Instance methods
	MatchData#[]
	MatchData#begin
	MatchData#captures
	MatchData#end
	MatchData#initialize_copy
	MatchData#length
	MatchData#offset
	MatchData#post_match
	MatchData#pre_match
	MatchData#size
	MatchData#string
	MatchData#to_a
	MatchData#to_s

	Proc
	General description
	Direct superclass
	Singleton methods
	Proc.new

	Instance methods
	Proc#[]
	Proc#arity
	Proc#call
	Proc#clone
	Proc#dup

	Struct
	General description
	Direct superclass
	Singleton methods
	Struct.new

	Instance methods
	Struct#==
	Struct#[]
	Struct#[]=
	Struct#each
	Struct#each_pair
	Struct#members
	Struct#select
	Struct#initialize
	Struct#initialize_copy

	Time
	General description
	Direct superclass
	Time computation
	Day
	Year
	Month
	Days of month
	Hours, Minutes, and Seconds

	Time zone and Local time
	Daylight saving time
	Singleton methods
	Time.at
	Time.gm
	Time.local
	Time.mktime
	Time.now
	Time.utc

	Instance methods
	Time#+
	Time#-
	Time#<=>
	Time#asctime
	Time#ctime
	Time#day
	Time#dst?
	Time#getgm
	Time#getlocal
	Time#getutc
	Time#gmt?
	Time#gmt_offset
	Time#gmtime
	Time#gmtoff
	Time#hour
	Time#initialize
	Time#initialize_copy
	Time#localtime
	Time#mday
	Time#min
	Time#mon
	Time#month
	Time#sec
	Time#to_f
	Time#to_i
	Time#usec
	Time#utc
	Time#utc?
	Time#utc_offset
	Time#wday
	Time#yday
	Time#year
	Time#zone

	IO
	General description
	Direct superclass
	Included modules
	Singleton methods
	IO.open

	Instance methods
	IO#close
	IO#closed?
	IO#each
	IO#each_byte
	IO#each_line
	IO#eof?
	IO#flush
	IO#getc
	IO#gets
	IO#initialize_copy
	IO#print
	IO#putc
	IO#puts
	IO#read
	IO#readchar
	IO#readline
	IO#readlines
	IO#sync
	IO#sync=
	IO#write

	File
	General description
	Direct superclass
	Singleton methods
	File.exist?

	Instance methods
	File#initialize
	File#path

	Exception
	General description
	Direct superclass
	Built-in exception classes
	Singleton methods
	Exception.exception

	Instance methods
	Exception#exception
	Exception#message
	Exception#to_s
	Exception#initialize

	StandardError
	General description
	Direct superclass

	ArgumentError
	General description
	Direct superclass

	LocalJumpError
	Direct superclass
	Instance methods
	LocalJumpError#exit_value
	LocalJumpError#reason

	RangeError
	General description
	Direct superclass

	RegexpError
	General description
	Direct superclass

	RuntimeError
	General description
	Direct superclass

	TypeError
	General description
	Direct superclass

	ZeroDivisionError
	General description
	Direct superclass

	NameError
	Direct superclass
	Instance methods
	NameError#name
	NameError#initialize

	NoMethodError
	Direct superclass
	Instance methods
	NoMethodError#args
	NoMethodError#initialize

	IndexError
	General description
	Direct superclass

	IOError
	General description
	Direct superclass

	EOFError
	General description
	Direct superclass

	SystemCallError
	General description
	Direct superclass

	ScriptError
	General description
	Direct superclass

	SyntaxError
	General description
	Direct superclass

	LoadError
	General description
	Direct superclass

	Built-in modules
	Kernel
	General description
	Singleton methods
	Kernel.`
	Kernel.block_given?
	Kernel.eval
	Kernel.global_variables
	Kernel.iterator?
	Kernel.lambda
	Kernel.local_variables
	Kernel.loop
	Kernel.p
	Kernel.print
	Kernel.puts
	Kernel.raise
	Kernel.require

	Instance methods
	Kernel#==
	Kernel#===
	Kernel#__id__
	Kernel#__send__
	Kernel#`
	Kernel#block_given?
	Kernel#class
	Kernel#clone
	Kernel#dup
	Kernel#eql?
	Kernel#equal?
	Kernel#eval
	Kernel#extend
	Kernel#global_variables
	Kernel#hash
	Kernel#initialize_copy
	Kernel#inspect
	Kernel#instance_eval
	Kernel#instance_of?
	Kernel#instance_variable_defined?
	Kernel#instance_variable_get
	Kernel#instance_variable_set
	Kernel#instance_variables
	Kernel#is_a?
	Kernel#iterator?
	Kernel#kind_of?
	Kernel#lambda
	Kernel#local_variables
	Kernel#loop
	Kernel#method_missing
	Kernel#methods
	Kernel#nil?
	Kernel#object_id
	Kernel#p
	Kernel#print
	Kernel#private_methods
	Kernel#protected_methods
	Kernel#public_methods
	Kernel#puts
	Kernel#raise
	Kernel#remove_instance_variable
	Kernel#require
	Kernel#respond_to?
	Kernel#send
	Kernel#singleton_methods
	Kernel#to_s

	Enumerable
	General description
	Instance methods
	Enumerable#all?
	Enumerable#any?
	Enumerable#collect
	Enumerable#detect
	Enumerable#each_with_index
	Enumerable#entries
	Enumerable#find
	Enumerable#find_all
	Enumerable#grep
	Enumerable#include?
	Enumerable#inject
	Enumerable#map
	Enumerable#max
	Enumerable#min
	Enumerable#member?
	Enumerable#partition
	Enumerable#reject
	Enumerable#select
	Enumerable#sort
	Enumerable#to_a

	Comparable
	General description
	Instance methods
	Comparable#<
	Comparable#<=
	Comparable#==
	Comparable#>
	Comparable#>=
	Comparable#between?

