USB Part 1: Wires, packets, transactions

Which USB are we talking about?

- Full speed (12 Mbps)
- Universal Serial Bus Specification Revision 2.0, April 27, 2000
- 650 page document
- Engineering Change Notices (ECNs)

Types of USB

- Low Speed: 1.5 Mbps
- Full Speed: 12 Mbps
- High Speed: 480 Mbps
- SuperSpeed: up to 5000 Mbps
- SuperSpeed+: up to 10000 Mbps

Bus topology

- One host
 - Detects devices, initiate communication
- Multiple devices
 - Provides one or "functions" to the host

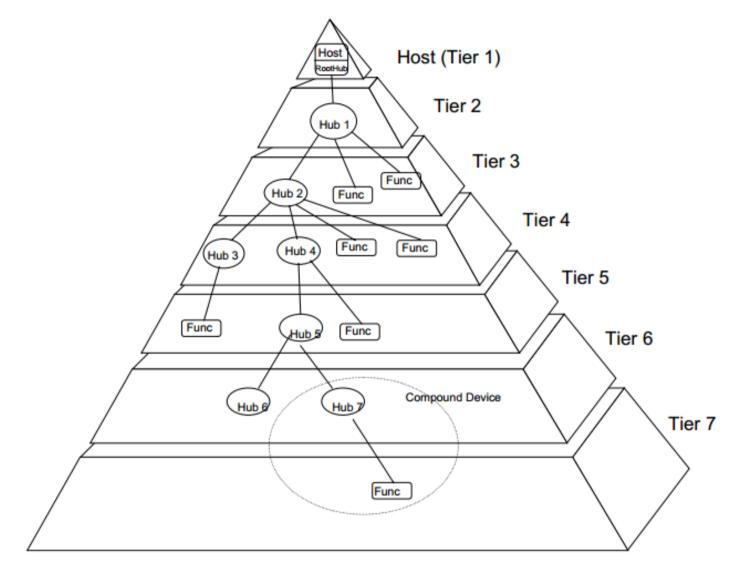
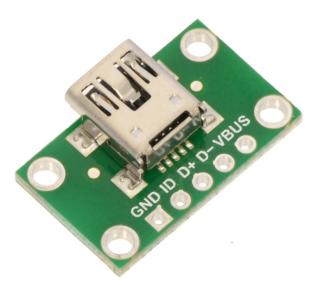


Figure 4-1. Bus Topology


USB 2.0 section 4.1.1

Topology is enforced by connectors

A receptacle

k plug

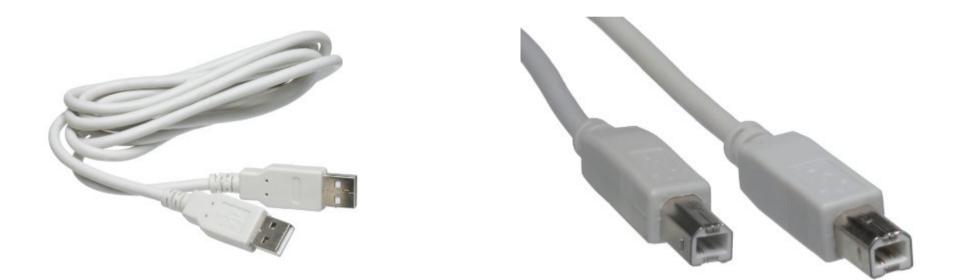
http://uk.farnell.com/multicomp/mc32593/usb-2-0-type-a-recetpacle-th/dp/1696534

Prohibited cable assemblies

"USB is optimized for ease of use. The expectation is that if the device can be plugged in, it will work."

USB 2.0 section 6.4.4

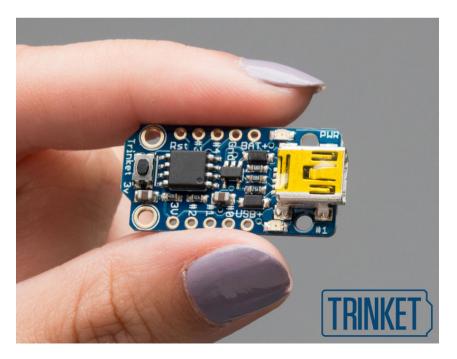
Prohibited cable assembly: Extension cables assembly

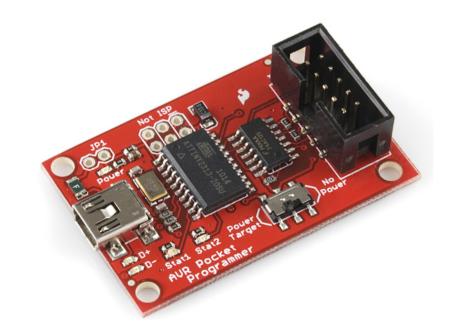


©2000 Belkin Components

USB 2.0 section 6.4.4

Prohibited cable assembly: Cable that violates USB topology rules




But USB On-the-go (OTG) is fine.

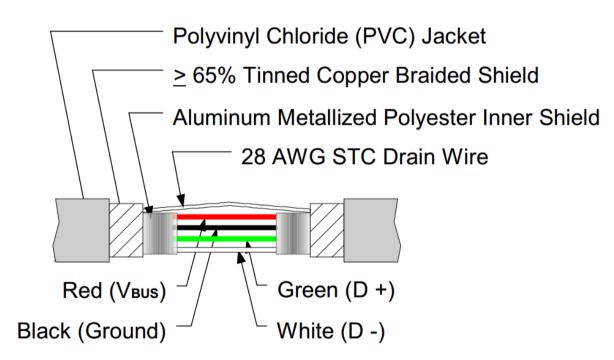
USB 2.0 section 6.4.4 http://www.showmecables.com

Prohibited cable assembly: Standard <u>detachable</u> cables for low-speed devices

• "Using a long high-/full-speed cable exceeds the capacitive load of low-speed."

https://learn.adafruit.com/introducing-trinket/introduction

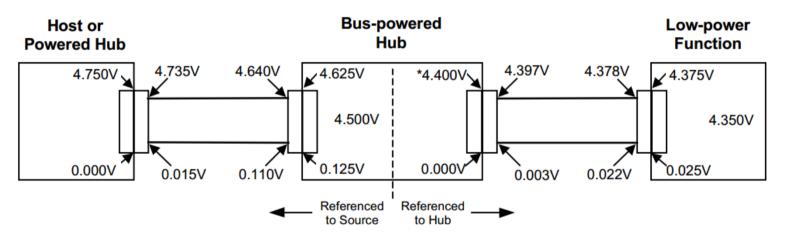
https://www.sparkfun.com/products/9825


- Chapter 6 has more mechanical specifications
- My favorite part:

	elements of a USB connector.		
Insertion Force	EIA 364-13 The object of this test is to detail a standard method for determining the mechanical forces required for inserting a USB connector.	35 Newtons maximum at a maximum rate of 12.5 mm (0.492") per minute.	7.9 lbs
Extraction Force	EIA 364-13 The object of this test is to detail a standard method for determining the mechanical forces required for extracting a USB connector.	10 Newtons minimum at a maximum rate of 12.5 mm (0.492") per minute.	2.2 lbs

That's enough mechanical stuff. Let's talk about the electronics....

USB wires


Detail C - C (Typical USB Shielded Cable)

USB 2.0 section 6.3

Power distribution: Voltage

Devices typically get 5.0 V but it could be as low as 4.35 V.

*Under transient conditions, supply at hub can drop from 4.400V to 4.070V

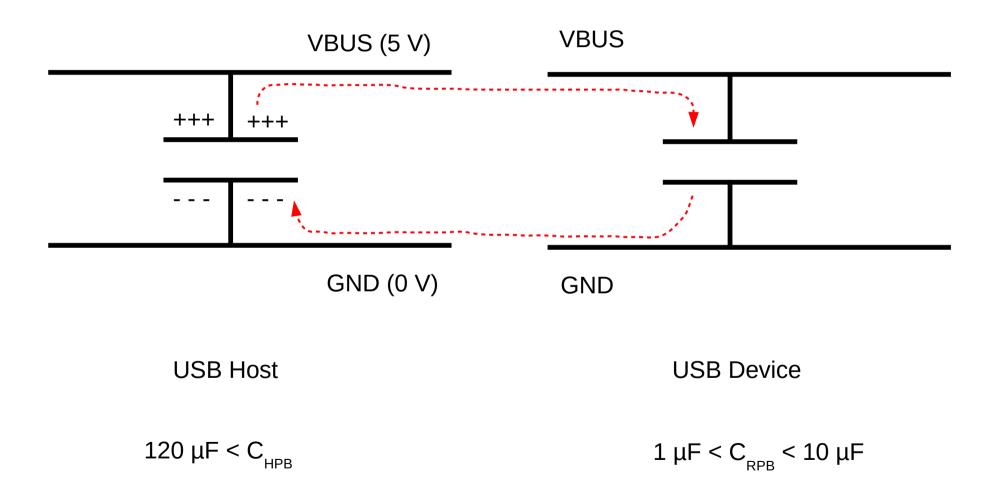
Figure 7-47. Worst-case Voltage Drop Topology (Steady State)

USB 2.0 section 7.2

Current limits

- "Unit load" is defined to be 100 mA
- Low power device: 1 unit load (100 mA)
- High power device: up to 5 unit loads (500 mA)
- Devices cannot draw more than 1 unit load until the device is configured by the host.
- (Later USB specifications allow for a lot more current.)
- Suspend mode: 2.5 mA

Sourcing VBUS


"No device shall supply (source) current on VBUS at its upstream facing port at any time."

Arduino Uno does it though

http://forum.pololu.com/viewtopic.php?f=3&t=3083

USB 2.0 section 7.2.1

Inrush current limiting

USB 2.0 section 7.2.4.1; Device Capacitance ECN

USB data lines

USB resistors

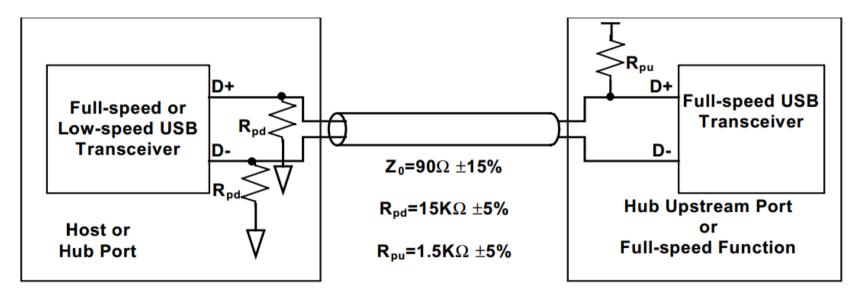


Figure 7-20. Full-speed Device Cable and Resistor Connections

- D+ pull-up should be controllable so you can disconnect from the bus.
- D+ pull-up should only be powered when VBUS is present.
- D+ and D- use 0 V to 3.3 V signalling levels.

USB 2.0 figure 7-20; Pull-up/pull-down resistors ECN

Signalling levels

- J: D+ high, D- low: default
- K: D+ low, D- high
- SE0: both low: signals reset or end of packet
- SE1: both high: not used

Packet boundaries

- Start of packet: Data lines switch from idle (J) to K.
- End of packet: SE0 for 2 bit times, J for 1 bit time.

Sync pattern

Every packet starts with KJKJKJKK:

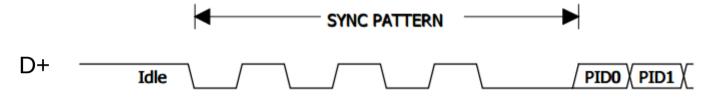


Figure 7-35. Sync Pattern (Low-/full-speed)

USB 2.0 section 7.1.1.10

NRZI: Non Return to Zero Invert

- Changing voltage level represents a 0
- Same voltage level represents a 1

K J K J K K J J J K K J J K K J K K K J SE0 ----- sync ----- 0 1 1 0 1 0 1 0 0 1 00 1 1 0

USB 2.0 section 7.1.8

Bit stuffing

A zero is inserted after every six consecutive ones in the data stream, to force a transition.

0010111111<u>0</u>110110

USB 2.0 section 7.1.9

That's how packets work. Now we can just think of each packet as a sequence of 0s and 1s.

Start, 0111011010111010101110000, End

Packet identifier (PID)

Every packet starts with a 4-bit PID and its inverse.

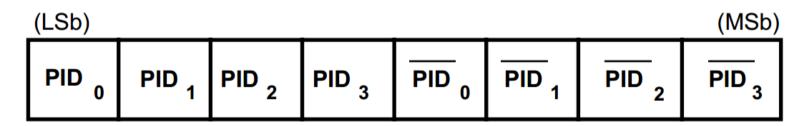


Figure 8-1. PID Format

USB 2.0 section 8.3.1

PID types (the important ones)

- 0001: OUT token
- 1001: IN token
- 0101: SOF token
- 1101: SETUP token
- 0011: DATA0
- 1011: DATA1
- 0010: ACK handshake
- 1010: NAK handshake
- 1110: STALL handshake

USB 2.0 section 8.3.1

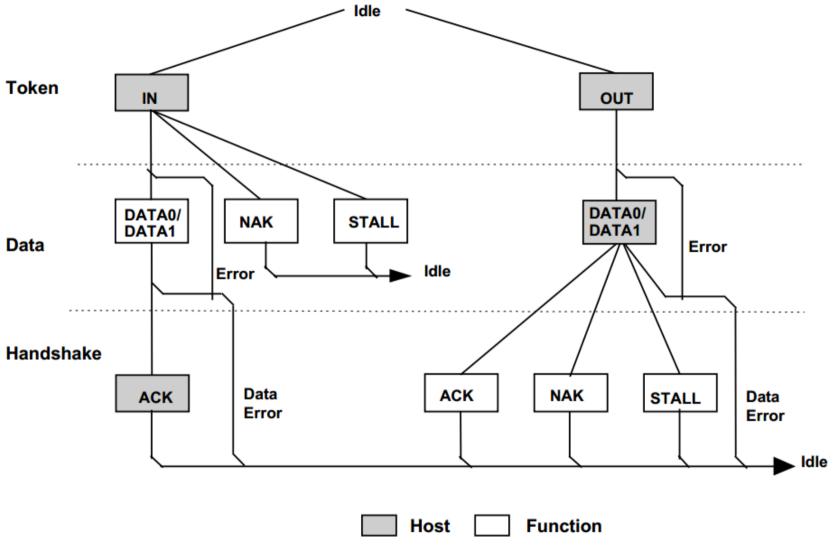
Packet types and their fields

- OUT, address, endpoint, CRC5
- IN, address, endpoint, CRC5
- SOF, frame number, CRC5
- SETUP, address, endpoint, CRC5
- DATA0, data, CRC16
- DATA1, data, CRC16
- ACK
- NAK
- STALL

address: 7-bit endpoint: 4-bit data: 0 to 1024 bytes

Packets are combined to form transactions.

OUT transaction


• Transfers data out from the host to the device

Host: OUT (address, endpoint)
Host: DATA0 or DATA1 packet
Device: ACK, NAK, STALL

IN transaction

• Transfers data in to the host from the device

Host: IN (address, endpoint)
Device: DATA0, DATA1, or NAK packet
Host: ACK

Figure 8-38. Interrupt Transaction Format

USB 2.0 figure 8-38

Transaction considerations

- Host initiates all transactions
- Device must respond very fast
- Device responses are usually queued up ahead of time an then handled entirely by hardware
- Can't easily make wireless USB

Data toggle and error handling

- We already have ACK packets, but what happens if the ACK is lost?
- The sender must resend packet until ACKed.
- Receiver must be able to detect duplicate packets.
- Solution: data toggle bit included with every DATA packet in the PID (DATA0 or DATA1)

Endpoint types

- Interrupt: guaranteed latency
- Bulk: best effort
- Control: requests and responses
- Isochronous: streaming, no error handling

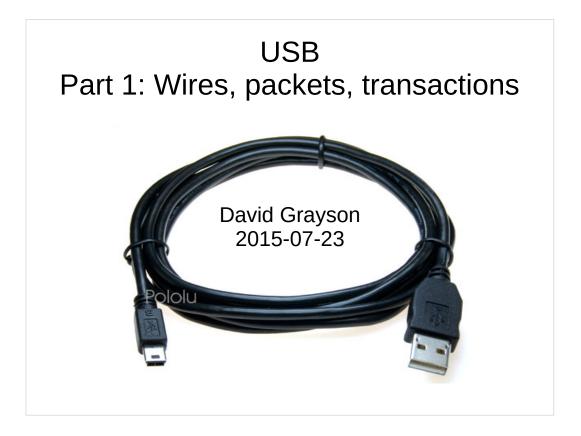
EOP

Universal Serial Bus Specification

Compaq
Hewlett-Packard
Intel
Lucent
Microsoft
NEC
Philips
Revision 2.0
April 27, 2000

USB 2.0 page 1

Address and endpoint fields


- Only present for OUT, IN, and SETUP packets
- 7-bit device address
 - Devices use address 0 after being reset (D+ and Dlow for a while), and then the host assigns another address.
- 4-bit endpoint number

Data field

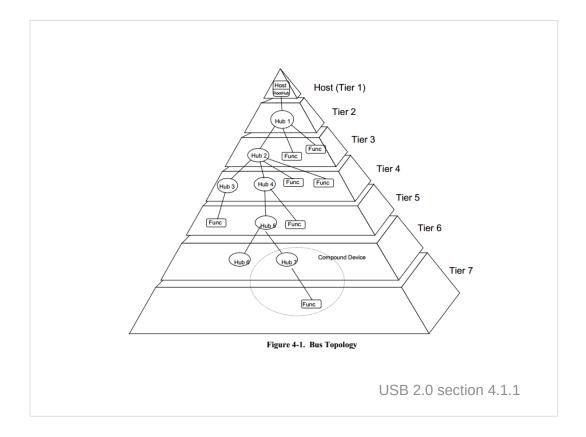
- Only present for DATA0 and DATA1 packets.
- Integral number of bytes from 0 to 1024

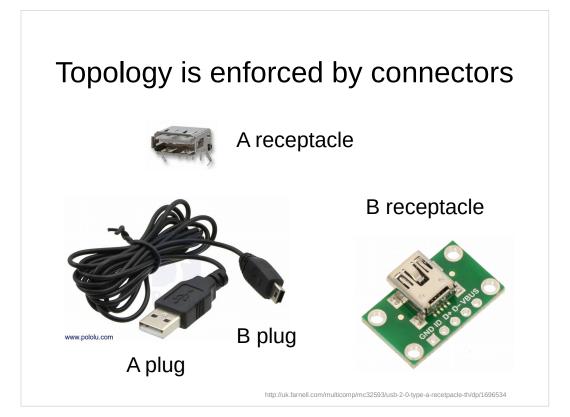
Cyclic Redundancy Checks (CRCs)

- 5-bit CRC for IN/OUT/SETUP packets.
- 16-bit CRC for DATA0/DATA1 packets.
- Packets with failed CRCs must be ignored.

Which USB are we talking about?

- Full speed (12 Mbps)
- Universal Serial Bus Specification Revision 2.0, April 27, 2000
- 650 page document
- Engineering Change Notices (ECNs)


Types of USB


- Low Speed: 1.5 Mbps
- Full Speed: 12 Mbps
- High Speed: 480 Mbps
- SuperSpeed: up to 5000 Mbps
- SuperSpeed+: up to 10000 Mbps

Bus topology

- One host
 - Detects devices, initiate communication
- Multiple devices
 - Provides one or "functions" to the host

Prohibited cable assemblies

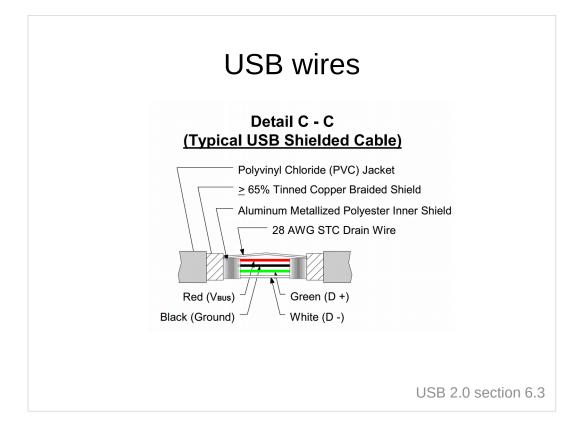
"USB is optimized for ease of use. The expectation is that if the device can be plugged in, it will work."

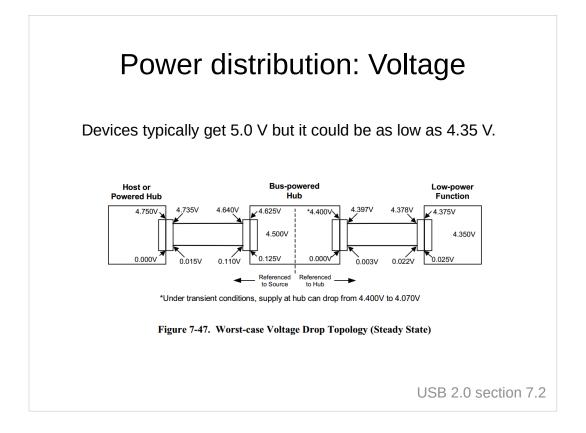
USB 2.0 section 6.4.4

Prohibited cable assembly: Standard <u>detachable</u> cables for low-speed devices

• "Using a long high-/full-speed cable exceeds the capacitive load of low-speed."

https://learn.adafruit.com/introducing-trinket/introduction

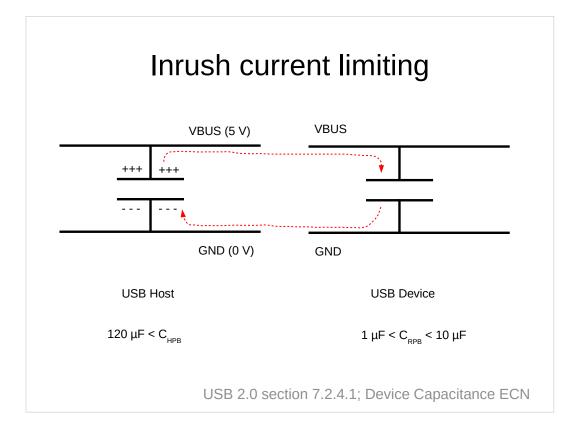



https://www.sparkfun.com/products/9825

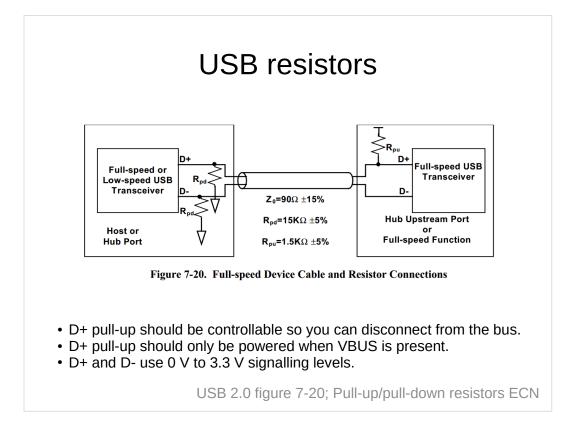
- Chapter 6 has more mechanical specifications
- My favorite part:

Insertion Force	EIA 364-13 The object of this test is to detail a standard method for determining the mechanical forces required for inserting a USB connector.	35 Newtons maximum at a maximum rate of 12.5 mm (0.492") per minute.	7.9 lbs
Extraction Force	EIA 364-13 The object of this test is to detail a standard method for determining the mechanical forces required for extracting a USB connector.	10 Newtons minimum at a maximum rate of 12.5 mm (0.492") per minute.	2.2 lbs

That's enough mechanical stuff. Let's talk about the electronics....



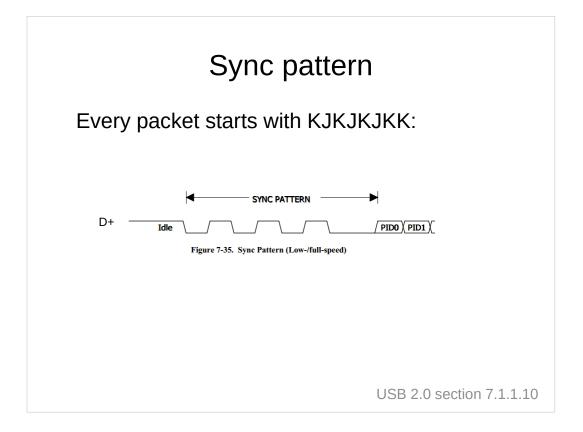
Current limits

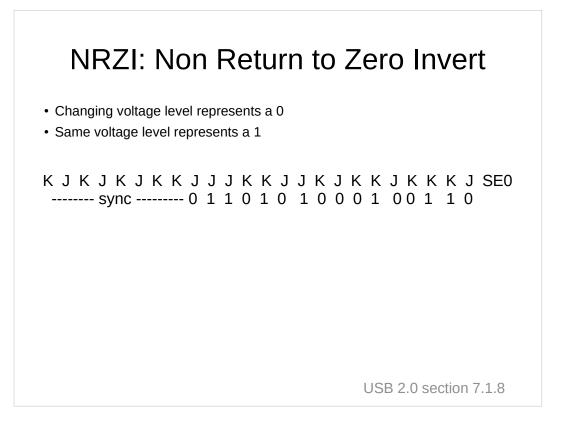

- "Unit load" is defined to be 100 mA
- Low power device: 1 unit load (100 mA)
- High power device: up to 5 unit loads (500 mA)
- Devices cannot draw more than 1 unit load until the device is configured by the host.
- (Later USB specifications allow for a lot more current.)
- Suspend mode: 2.5 mA

USB 2.0 section 7.2.1, Suspend Current ECN

<text><text><text><text><page-footer>

Signalling levels


- J: D+ high, D- low: default
- K: D+ low, D- high
- SE0: both low: signals reset or end of packet
- SE1: both high: not used

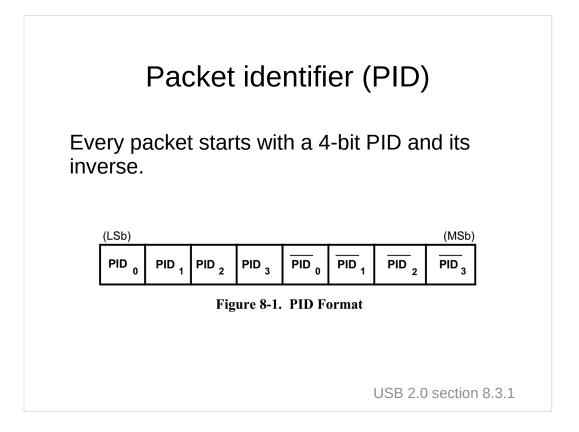

USB 2.0 section 7.1.7.1

Packet boundaries

- Start of packet: Data lines switch from idle (J) to K.
- End of packet: SE0 for 2 bit times, J for 1 bit time.

USB 2.0 section 7.1.7.1

Bit stuffing


A zero is inserted after every six consecutive ones in the data stream, to force a transition.

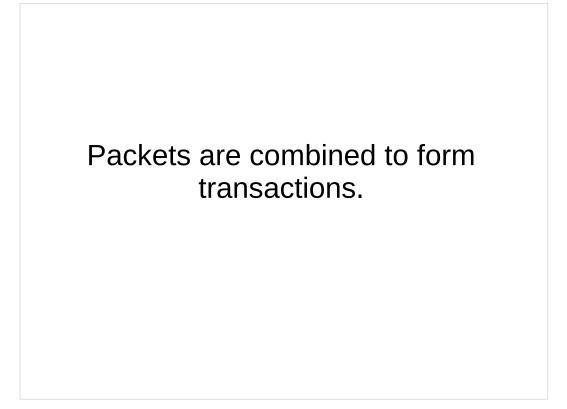
00101111110110110

USB 2.0 section 7.1.9

That's how packets work. Now we can just think of each packet as a sequence of 0s and 1s.

Start, 0111011010111010101110000, End

PID types (the important ones)


- 0001: OUT token
- 1001: IN token
- 0101: SOF token
- 1101: SETUP token
- 0011: DATA0
- 1011: DATA1
- 0010: ACK handshake
- 1010: NAK handshake
- 1110: STALL handshake

USB 2.0 section 8.3.1

Packet types and their fields

- OUT, address, endpoint, CRC5
- IN, address, endpoint, CRC5
- SOF, frame number, CRC5
- SETUP, address, endpoint, CRC5
- DATA0, data, CRC16
- DATA1, data, CRC16
- ACK
- NAK
- STALL

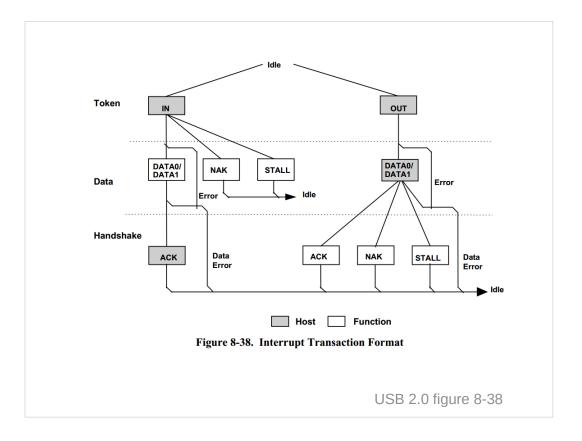
address: 7-bit endpoint: 4-bit data: 0 to 1024 bytes

OUT transaction

Transfers data out from the host to the device

1) Host: OUT (address, endpoint)

2) Host: DATA0 or DATA1 packet3) Device: ACK, NAK, STALL


IN transaction

• Transfers data in to the host from the device

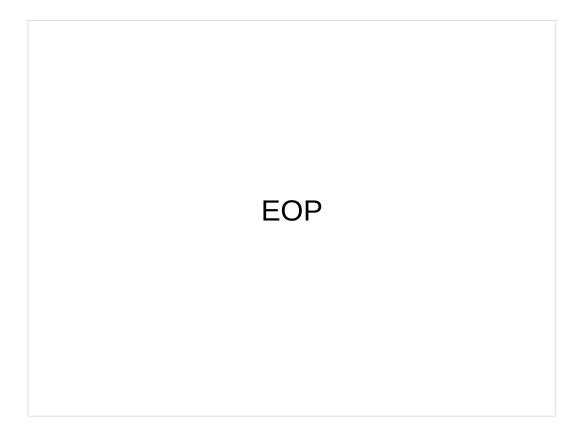
1) Host: IN (address, endpoint)

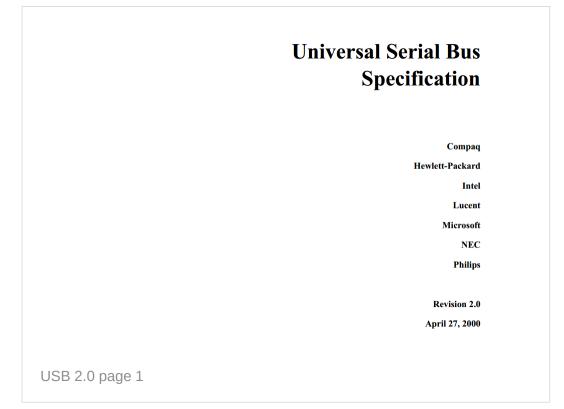
2) Device: DATA0, DATA1, or NAK packet

3) Host: ACK

Transaction considerations

- Host initiates all transactions
- Device must respond very fast
- Device responses are usually queued up ahead of time an then handled entirely by hardware
- Can't easily make wireless USB


Data toggle and error handling


- We already have ACK packets, but what happens if the ACK is lost?
- The sender must resend packet until ACKed.
- Receiver must be able to detect duplicate packets.
- Solution: data toggle bit included with every DATA packet in the PID (DATA0 or DATA1)

USB 2.0 section 8.6

Endpoint types

- Interrupt: guaranteed latency
- Bulk: best effort
- Control: requests and responses
- Isochronous: streaming, no error handling

Address and endpoint fields

- Only present for OUT, IN, and SETUP packets
- 7-bit device address
 - Devices use address 0 after being reset (D+ and Dlow for a while), and then the host assigns another address.
- 4-bit endpoint number

USB 2.0 section 8.3.2.1

Data field

- Only present for DATA0 and DATA1 packets.
- Integral number of bytes from 0 to 1024

USB 2.0 section 8.3.4

Cyclic Redundancy Checks (CRCs)

- 5-bit CRC for IN/OUT/SETUP packets.
- 16-bit CRC for DATA0/DATA1 packets.
- Packets with failed CRCs must be ignored.

USB 2.0 section 8.3.5